亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Training Generative Adversarial Networks (GANs) remains a challenging problem. The discriminator trains the generator by learning the distribution of real/generated data. However, the distribution of generated data changes throughout the training process, which is difficult for the discriminator to learn. In this paper, we propose a novel method for GANs from the viewpoint of online continual learning. We observe that the discriminator model, trained on historically generated data, often slows down its adaptation to the changes in the new arrival generated data, which accordingly decreases the quality of generated results. By treating the generated data in training as a stream, we propose to detect whether the discriminator slows down the learning of new knowledge in generated data. Therefore, we can explicitly enforce the discriminator to learn new knowledge fast. Particularly, we propose a new discriminator, which automatically detects its retardation and then dynamically masks its features, such that the discriminator can adaptively learn the temporally-vary distribution of generated data. Experimental results show our method outperforms the state-of-the-art approaches.

相關內容

Complex Query Answering (CQA) over Knowledge Graphs (KGs) is a challenging task. Given that KGs are usually incomplete, neural models are proposed to solve CQA by performing multi-hop logical reasoning. However, most of them cannot perform well on both one-hop and multi-hop queries simultaneously. Recent work proposes a logical message passing mechanism based on the pre-trained neural link predictors. While effective on both one-hop and multi-hop queries, it ignores the difference between the constant and variable nodes in a query graph. In addition, during the node embedding update stage, this mechanism cannot dynamically measure the importance of different messages, and whether it can capture the implicit logical dependencies related to a node and received messages remains unclear. In this paper, we propose Conditional Logical Message Passing Transformer (CLMPT), which considers the difference between constants and variables in the case of using pre-trained neural link predictors and performs message passing conditionally on the node type. We empirically verified that this approach can reduce computational costs without affecting performance. Furthermore, CLMPT uses the transformer to aggregate received messages and update the corresponding node embedding. Through the self-attention mechanism, CLMPT can assign adaptive weights to elements in an input set consisting of received messages and the corresponding node and explicitly model logical dependencies between various elements. Experimental results show that CLMPT is a new state-of-the-art neural CQA model.

Recent developments in Multimodal Large Language Models (MLLMs) have shown rapid progress, moving towards the goal of creating versatile MLLMs that understand inputs from various modalities. However, existing methods typically rely on joint training with paired multimodal instruction data, which is resource-intensive and challenging to extend to new modalities. In this paper, we propose a new paradigm through the model composition of existing MLLMs to create a new model that retains the modal understanding capabilities of each original model. Our basic implementation, NaiveMC, demonstrates the effectiveness of this paradigm by reusing modality encoders and merging LLM parameters. Furthermore, we introduce DAMC to address parameter interference and mismatch issues during the merging process, thereby enhancing the model performance. To facilitate research in this area, we propose MCUB, a benchmark for assessing ability of MLLMs to understand inputs from diverse modalities. Experiments on this benchmark and four other multimodal understanding tasks show significant improvements over baselines, proving that model composition can create a versatile model capable of processing inputs from multiple modalities.

Scientists often pose questions about treatment effects on outcomes conditional on a post-treatment event. However, defining, identifying, and estimating causal effects conditional on post-treatment events requires care, even in perfectly executed randomized experiments. Recently, the conditional separable effect (CSE) was proposed as an interventionist estimand, corresponding to scientifically meaningful questions in these settings. However, while being a single-world estimand, which can be queried experimentally, existing identification results for the CSE require no unmeasured confounding between the outcome and post-treatment event. This assumption can be violated in many applications. In this work, we address this concern by developing new identification and estimation results for the CSE in the presence of unmeasured confounding. We establish nonparametric identification of the CSE in both observational and experimental settings when certain proxy variables are available for hidden common causes of the post-treatment event and outcome. We characterize the efficient influence function for the CSE under a semiparametric model of the observed data law in which nuisance functions are a priori unrestricted. Moreover, we develop a consistent, asymptotically linear, and locally semiparametric efficient estimator of the CSE using modern machine learning theory. We illustrate our framework with simulation studies and a real-world cancer therapy trial.

Network pruning can reduce the computation cost of deep neural network (DNN) models. However, sparse models often produce randomly-distributed weights to maintain accuracy, leading to irregular computations. Consequently, unstructured sparse models cannot achieve meaningful speedup on commodity hardware built for dense matrix computations. Accelerators are usually modified or designed with structured sparsity-optimized architectures for exploiting sparsity. For example, the Ampere architecture introduces a sparse tensor core, which adopts the 2:4 sparsity pattern. We propose a pruning method that builds upon the insight that matrix multiplication generally breaks the large matrix into multiple smaller tiles for parallel execution. We present the tile-wise sparsity pattern, which maintains a structured sparsity pattern at the tile level for efficient execution but allows for irregular pruning at the global scale to maintain high accuracy. In addition, the tile-wise sparsity is implemented at the global memory level, and the 2:4 sparsity executes at the register level inside the sparse tensor core. We can combine these two patterns into a tile-vector-wise (TVW) sparsity pattern to explore more fine-grained sparsity and further accelerate the sparse DNN models. We evaluate the TVW on the GPU, achieving averages of $1.85\times$, $2.75\times$, and $22.18\times$ speedups over the dense model, block sparsity, and unstructured sparsity.

The past decade has witnessed substantial growth of data-driven speech enhancement (SE) techniques thanks to deep learning. While existing approaches have shown impressive performance in some common datasets, most of them are designed only for a single condition (e.g., single-channel, multi-channel, or a fixed sampling frequency) or only consider a single task (e.g., denoising or dereverberation). Currently, there is no universal SE approach that can effectively handle diverse input conditions with a single model. In this paper, we make the first attempt to investigate this line of research. First, we devise a single SE model that is independent of microphone channels, signal lengths, and sampling frequencies. Second, we design a universal SE benchmark by combining existing public corpora with multiple conditions. Our experiments on a wide range of datasets show that the proposed single model can successfully handle diverse conditions with strong performance.

Data plays a fundamental role in the training of Large Language Models (LLMs). Effective data management, particularly in the formulation of a well-suited training dataset, holds significance for enhancing model performance and improving training efficiency during pretraining and supervised fine-tuning phases. Despite the considerable importance of data management, the current research community still falls short in providing a systematic analysis of the rationale behind management strategy selection, its consequential effects, methodologies for evaluating curated datasets, and the ongoing pursuit of improved strategies. Consequently, the exploration of data management has attracted more and more attention among the research community. This survey provides a comprehensive overview of current research in data management within both the pretraining and supervised fine-tuning stages of LLMs, covering various noteworthy aspects of data management strategy design: data quantity, data quality, domain/task composition, etc. Looking toward the future, we extrapolate existing challenges and outline promising directions for development in this field. Therefore, this survey serves as a guiding resource for practitioners aspiring to construct powerful LLMs through effective data management practices. The collection of the latest papers is available at //github.com/ZigeW/data_management_LLM.

While Reinforcement Learning (RL) achieves tremendous success in sequential decision-making problems of many domains, it still faces key challenges of data inefficiency and the lack of interpretability. Interestingly, many researchers have leveraged insights from the causality literature recently, bringing forth flourishing works to unify the merits of causality and address well the challenges from RL. As such, it is of great necessity and significance to collate these Causal Reinforcement Learning (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL. In particular, we divide existing CRL approaches into two categories according to whether their causality-based information is given in advance or not. We further analyze each category in terms of the formalization of different models, ranging from the Markov Decision Process (MDP), Partially Observed Markov Decision Process (POMDP), Multi-Arm Bandits (MAB), and Dynamic Treatment Regime (DTR). Moreover, we summarize the evaluation matrices and open sources while we discuss emerging applications, along with promising prospects for the future development of CRL.

With the rapid development of deep learning, training Big Models (BMs) for multiple downstream tasks becomes a popular paradigm. Researchers have achieved various outcomes in the construction of BMs and the BM application in many fields. At present, there is a lack of research work that sorts out the overall progress of BMs and guides the follow-up research. In this paper, we cover not only the BM technologies themselves but also the prerequisites for BM training and applications with BMs, dividing the BM review into four parts: Resource, Models, Key Technologies and Application. We introduce 16 specific BM-related topics in those four parts, they are Data, Knowledge, Computing System, Parallel Training System, Language Model, Vision Model, Multi-modal Model, Theory&Interpretability, Commonsense Reasoning, Reliability&Security, Governance, Evaluation, Machine Translation, Text Generation, Dialogue and Protein Research. In each topic, we summarize clearly the current studies and propose some future research directions. At the end of this paper, we conclude the further development of BMs in a more general view.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

We introduce an effective model to overcome the problem of mode collapse when training Generative Adversarial Networks (GAN). Firstly, we propose a new generator objective that finds it better to tackle mode collapse. And, we apply an independent Autoencoders (AE) to constrain the generator and consider its reconstructed samples as "real" samples to slow down the convergence of discriminator that enables to reduce the gradient vanishing problem and stabilize the model. Secondly, from mappings between latent and data spaces provided by AE, we further regularize AE by the relative distance between the latent and data samples to explicitly prevent the generator falling into mode collapse setting. This idea comes when we find a new way to visualize the mode collapse on MNIST dataset. To the best of our knowledge, our method is the first to propose and apply successfully the relative distance of latent and data samples for stabilizing GAN. Thirdly, our proposed model, namely Generative Adversarial Autoencoder Networks (GAAN), is stable and has suffered from neither gradient vanishing nor mode collapse issues, as empirically demonstrated on synthetic, MNIST, MNIST-1K, CelebA and CIFAR-10 datasets. Experimental results show that our method can approximate well multi-modal distribution and achieve better results than state-of-the-art methods on these benchmark datasets. Our model implementation is published here: //github.com/tntrung/gaan

北京阿比特科技有限公司