This paper describes the design and implementation of a virtual and remote laboratory based on Easy Java Simulations (EJS) and LabVIEW. The main application of this laboratory is to improve the study of sensors in Mobile Robotics, dealing with the problems that arise on the real world experiments. This laboratory allows the user to work from their homes, tele-operating a real robot that takes measurements from its sensors in order to obtain a map of its environment. In addition, the application allows interacting with a robot simulation (virtual laboratory) or with a real robot (remote laboratory), with the same simple and intuitive graphical user interface in EJS. Thus, students can develop signal processing and control algorithms for the robot in simulation and then deploy them on the real robot for testing purposes. Practical examples of application of the laboratory on the inter University Master of Systems Engineering and Automatic Control are presented.
This paper introduces a novel annotation framework for the fine-grained modeling of Noun Phrases' (NPs) genericity in natural language. The framework is designed to be simple and intuitive, making it accessible to non-expert annotators and suitable for crowd-sourced tasks. Drawing from theoretical and cognitive literature on genericity, this framework is grounded in established linguistic theory. Through a pilot study, we created a small but crucial annotated dataset of 324 sentences, serving as a foundation for future research. To validate our approach, we conducted an evaluation comparing our continuous annotations with existing binary annotations on the same dataset, demonstrating the framework's effectiveness in capturing nuanced aspects of genericity. Our work offers a practical resource for linguists, providing a first annotated dataset and an annotation scheme designed to build real-language datasets that can be used in studies on the semantics of genericity, and NLP practitioners, contributing to the development of commonsense knowledge repositories valuable in enhancing various NLP applications.
This paper presents an innovative end-to-end workflow for mineral exploration, integrating ambient noise tomography (ANT) and artificial intelligence (AI) to enhance the discovery and delineation of mineral resources essential for the global transition to a low carbon economy. We focus on copper as a critical element, required in significant quantities for renewable energy solutions. We show the benefits of utilising ANT, characterised by its speed, scalability, depth penetration, resolution, and low environmental impact, alongside artificial intelligence (AI) techniques to refine a continent-scale prospectivity model at the deposit scale by fine-tuning our model on local high-resolution data. We show the promise of the method by first presenting a new data-driven AI prospectivity model for copper within Australia, which serves as our foundation model for further fine-tuning. We then focus on the Hillside IOCG deposit on the prospective Yorke Peninsula. We show that with relatively few local training samples (orebody intercepts), we can fine tune the foundation model to provide a good estimate of the Hillside orebody outline. Our methodology demonstrates how AI can augment geophysical data interpretation, providing a novel approach to mineral exploration with improved decision-making capabilities for targeting mineralization, thereby addressing the urgent need for increased mineral resource discovery.
This paper explores the pressing issue of risk assessment in Large Language Models (LLMs) as they become increasingly prevalent in various applications. Focusing on how reward models, which are designed to fine-tune pretrained LLMs to align with human values, perceive and categorize different types of risks, we delve into the challenges posed by the subjective nature of preference-based training data. By utilizing the Anthropic Red-team dataset, we analyze major risk categories, including Information Hazards, Malicious Uses, and Discrimination/Hateful content. Our findings indicate that LLMs tend to consider Information Hazards less harmful, a finding confirmed by a specially developed regression model. Additionally, our analysis shows that LLMs respond less stringently to Information Hazards compared to other risks. The study further reveals a significant vulnerability of LLMs to jailbreaking attacks in Information Hazard scenarios, highlighting a critical security concern in LLM risk assessment and emphasizing the need for improved AI safety measures.
This study presents NewsBench, a novel benchmark framework developed to evaluate the capability of Large Language Models (LLMs) in Chinese Journalistic Writing Proficiency (JWP) and their Safety Adherence (SA), addressing the gap between journalistic ethics and the risks associated with AI utilization. Comprising 1,267 tasks across 5 editorial applications, 7 aspects (including safety and journalistic writing with 4 detailed facets), and spanning 24 news topics domains, NewsBench employs two GPT-4 based automatic evaluation protocols validated by human assessment. Our comprehensive analysis of 10 LLMs highlighted GPT-4 and ERNIE Bot as top performers, yet revealed a relative deficiency in journalistic ethic adherence during creative writing tasks. These findings underscore the need for enhanced ethical guidance in AI-generated journalistic content, marking a step forward in aligning AI capabilities with journalistic standards and safety considerations.
This paper introduces the Passive Transformable Omni-Ball (PTOB), an advanced omnidirectional wheel engineered to enhance step-climbing performance, incorporate built-in actuators, diminish vibrations, and fortify structural integrity. By modifying the omni-ball's structure from two to three segments, we have achieved improved in-wheel actuation and a reduction in vibrational feedback. Additionally, we have implemented a sliding mechanism in the follower wheels to boost the wheel's step-climbing abilities. A prototype with a 127 mm diameter PTOB was constructed, which confirmed its functionality for omnidirectional movement and internal actuation. Compared to a traditional omni-wheel, the PTOB demonstrated a comparable level of vibration while offering superior capabilities. Extensive testing in varied settings showed that the PTOB can adeptly handle step obstacles up to 45 mm, equivalent to 35 $\%$ of the wheel's diameter, in both the forward and lateral directions. The PTOB showcased robust construction and proved to be versatile in navigating through environments with diverse obstacles.
This paper introduces HuLP, a Human-in-the-Loop for Prognosis model designed to enhance the reliability and interpretability of prognostic models in clinical contexts, especially when faced with the complexities of missing covariates and outcomes. HuLP offers an innovative approach that enables human expert intervention, empowering clinicians to interact with and correct models' predictions, thus fostering collaboration between humans and AI models to produce more accurate prognosis. Additionally, HuLP addresses the challenges of missing data by utilizing neural networks and providing a tailored methodology that effectively handles missing data. Traditional methods often struggle to capture the nuanced variations within patient populations, leading to compromised prognostic predictions. HuLP imputes missing covariates based on imaging features, aligning more closely with clinician workflows and enhancing reliability. We conduct our experiments on two real-world, publicly available medical datasets to demonstrate the superiority of HuLP.
This paper presents the examination of the 5G cellular network aware of Renewable Energy Sources (RESs) and supported by Reconfigurable Intelligent Surfaces (RISs) and Unmanned Aerial Vehicles working as mobile access nodes. The investigations have been focused on the energy side of the Radio Access Network (RAN) placed within the area of the city of Poznan (Poland). The gain related to enabling RES generators, i.e., photovoltaic (PV) panels, for base stations (BSs) was presented in the form of two factors -- the average number of UAV replacements (ANUR) with a fully charged one to ensure continuous access to mobile services for currently served user equipment (UE) terminals, and the average reduction in energy consumption (AREC) within the whole network.
This paper presents an exhaustive quantitative and qualitative evaluation of Large Language Models (LLMs) for Knowledge Graph (KG) construction and reasoning. We employ eight distinct datasets that encompass aspects including entity, relation and event extraction, link prediction, and question answering. Empirically, our findings suggest that GPT-4 outperforms ChatGPT in the majority of tasks and even surpasses fine-tuned models in certain reasoning and question-answering datasets. Moreover, our investigation extends to the potential generalization ability of LLMs for information extraction, which culminates in the presentation of the Virtual Knowledge Extraction task and the development of the VINE dataset. Drawing on these empirical findings, we further propose AutoKG, a multi-agent-based approach employing LLMs for KG construction and reasoning, which aims to chart the future of this field and offer exciting opportunities for advancement. We anticipate that our research can provide invaluable insights for future undertakings of KG\footnote{Code and datasets will be available in //github.com/zjunlp/AutoKG.
This paper updates the survey of AI accelerators and processors from past three years. This paper collects and summarizes the current commercial accelerators that have been publicly announced with peak performance and power consumption numbers. The performance and power values are plotted on a scatter graph, and a number of dimensions and observations from the trends on this plot are again discussed and analyzed. Two new trends plots based on accelerator release dates are included in this year's paper, along with the additional trends of some neuromorphic, photonic, and memristor-based inference accelerators.
In this paper we address issues with image retrieval benchmarking on standard and popular Oxford 5k and Paris 6k datasets. In particular, annotation errors, the size of the dataset, and the level of challenge are addressed: new annotation for both datasets is created with an extra attention to the reliability of the ground truth. Three new protocols of varying difficulty are introduced. The protocols allow fair comparison between different methods, including those using a dataset pre-processing stage. For each dataset, 15 new challenging queries are introduced. Finally, a new set of 1M hard, semi-automatically cleaned distractors is selected. An extensive comparison of the state-of-the-art methods is performed on the new benchmark. Different types of methods are evaluated, ranging from local-feature-based to modern CNN based methods. The best results are achieved by taking the best of the two worlds. Most importantly, image retrieval appears far from being solved.