亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a predictor-corrector adaptive method for the simulation of hyperbolic partial differential equations (PDEs) on networks under general uncertainty in parameters, initial conditions, or boundary conditions. The approach is based on the stochastic finite volume (SFV) framework that circumvents sampling schemes or simulation ensembles while also preserving fundamental properties, in particular hyperbolicity of the resulting systems and conservation of the discrete solutions. The initial boundary value problem (IBVP) on a set of network-connected one-dimensional domains that represent a pipeline is represented using active discretization of the physical and stochastic spaces, and we evaluate the propagation of uncertainty through network nodes by solving a junction Riemann problem. The adaptivity of our method in refining discretization based on error metrics enables computationally tractable evaluation of intertemporal uncertainty in order to support decisions about timing and quantity of pipeline operations to maximize delivery under transient and uncertain conditions. We illustrate our computational method using simulations for a representative network.

相關內容

While effective in practice, iterative methods for solving large systems of linear equations can be significantly affected by problem-dependent condition number quantities. This makes characterizing their time complexity challenging, particularly when we wish to make comparisons between deterministic and stochastic methods, that may or may not rely on preconditioning and/or fast matrix multiplication. In this work, we consider a fine-grained notion of complexity for iterative linear solvers which we call the spectral tail condition number, $\kappa_\ell$, defined as the ratio between the $\ell$th largest and the smallest singular value of the matrix representing the system. Concretely, we prove the following main algorithmic result: Given an $n\times n$ matrix $A$ and a vector $b$, we can find $\tilde{x}$ such that $\|A\tilde{x}-b\|\leq\epsilon\|b\|$ in time $\tilde{O}(\kappa_\ell\cdot n^2\log 1/\epsilon)$ for any $\ell = O(n^{\frac1{\omega-1}})=O(n^{0.729})$, where $\omega \approx 2.372$ is the current fast matrix multiplication exponent. This guarantee is achieved by Sketch-and-Project with Nesterov's acceleration. Some of the implications of our result, and of the use of $\kappa_\ell$, include direct improvement over a fine-grained analysis of the Conjugate Gradient method, suggesting a stronger separation between deterministic and stochastic iterative solvers; and relating the complexity of iterative solvers to the ongoing algorithmic advances in fast matrix multiplication, since the bound on $\ell$ improves with $\omega$. Our main technical contributions are new sharp characterizations for the first and second moments of the random projection matrix that commonly arises in sketching algorithms, building on a combination of techniques from combinatorial sampling via determinantal point processes and Gaussian universality results from random matrix theory.

We utilize extreme learning machines for the prediction of partial differential equations (PDEs). Our method splits the state space into multiple windows that are predicted individually using a single model. Despite requiring only few data points (in some cases, our method can learn from a single full-state snapshot), it still achieves high accuracy and can predict the flow of PDEs over long time horizons. Moreover, we show how additional symmetries can be exploited to increase sample efficiency and to enforce equivariance.

Comparative meta-analyses of groups of subjects by integrating multiple observational studies rely on estimated propensity scores (PSs) to mitigate covariate imbalances. However, PS estimation grapples with the theoretical and practical challenges posed by high-dimensional covariates. Motivated by an integrative analysis of breast cancer patients across seven medical centers, this paper tackles the challenges associated with integrating multiple observational datasets. The proposed inferential technique, called Bayesian Motif Submatrices for Covariates (B-MSC), addresses the curse of dimensionality by a hybrid of Bayesian and frequentist approaches. B-MSC uses nonparametric Bayesian "Chinese restaurant" processes to eliminate redundancy in the high-dimensional covariates and discover latent motifs or lower-dimensional structure. With these motifs as potential predictors, standard regression techniques can be utilized to accurately infer the PSs and facilitate covariate-balanced group comparisons. Simulations and meta-analysis of the motivating cancer investigation demonstrate the efficacy of the B-MSC approach to accurately estimate the propensity scores and efficiently address covariate imbalance when integrating observational health studies with high-dimensional covariates.

Bayesian optimization is a highly efficient approach to optimizing objective functions which are expensive to query. These objectives are typically represented by Gaussian process (GP) surrogate models which are easy to optimize and support exact inference. While standard GP surrogates have been well-established in Bayesian optimization, Bayesian neural networks (BNNs) have recently become practical function approximators, with many benefits over standard GPs such as the ability to naturally handle non-stationarity and learn representations for high-dimensional data. In this paper, we study BNNs as alternatives to standard GP surrogates for optimization. We consider a variety of approximate inference procedures for finite-width BNNs, including high-quality Hamiltonian Monte Carlo, low-cost stochastic MCMC, and heuristics such as deep ensembles. We also consider infinite-width BNNs, linearized Laplace approximations, and partially stochastic models such as deep kernel learning. We evaluate this collection of surrogate models on diverse problems with varying dimensionality, number of objectives, non-stationarity, and discrete and continuous inputs. We find: (i) the ranking of methods is highly problem dependent, suggesting the need for tailored inductive biases; (ii) HMC is the most successful approximate inference procedure for fully stochastic BNNs; (iii) full stochasticity may be unnecessary as deep kernel learning is relatively competitive; (iv) deep ensembles perform relatively poorly; (v) infinite-width BNNs are particularly promising, especially in high dimensions.

The end-to-end learning pipeline is gradually creating a paradigm shift in the ongoing development of highly autonomous vehicles, largely due to advances in deep learning, the availability of large-scale training datasets, and improvements in integrated sensor devices. However, a lack of interpretability in real-time decisions with contemporary learning methods impedes user trust and attenuates the widespread deployment and commercialization of such vehicles. Moreover, the issue is exacerbated when these cars are involved in or cause traffic accidents. Such drawback raises serious safety concerns from societal and legal perspectives. Consequently, explainability in end-to-end autonomous driving is essential to build trust in vehicular automation. However, the safety and explainability aspects of end-to-end driving have generally been investigated disjointly by researchers in today's state of the art. This survey aims to bridge the gaps between these topics and seeks to answer the following research question: When and how can explanations improve safety of end-to-end autonomous driving? In this regard, we first revisit established safety and state-of-the-art explainability techniques in end-to-end driving. Furthermore, we present three critical case studies and show the pivotal role of explanations in enhancing self-driving safety. Finally, we describe insights from empirical studies and reveal potential value, limitations, and caveats of practical explainable AI methods with respect to their safety assurance in end-to-end autonomous driving.

Diffusion probabilistic models (DPMs) which employ explicit likelihood characterization and a gradual sampling process to synthesize data, have gained increasing research interest. Despite their huge computational burdens due to the large number of steps involved during sampling, DPMs are widely appreciated in various medical imaging tasks for their high-quality and diversity of generation. Magnetic resonance imaging (MRI) is an important medical imaging modality with excellent soft tissue contrast and superb spatial resolution, which possesses unique opportunities for DPMs. Although there is a recent surge of studies exploring DPMs in MRI, a survey paper of DPMs specifically designed for MRI applications is still lacking. This review article aims to help researchers in the MRI community to grasp the advances of DPMs in different applications. We first introduce the theory of two dominant kinds of DPMs, categorized according to whether the diffusion time step is discrete or continuous, and then provide a comprehensive review of emerging DPMs in MRI, including reconstruction, image generation, image translation, segmentation, anomaly detection, and further research topics. Finally, we discuss the general limitations as well as limitations specific to the MRI tasks of DPMs and point out potential areas that are worth further exploration.

Instructing the model to generate a sequence of intermediate steps, a.k.a., a chain of thought (CoT), is a highly effective method to improve the accuracy of large language models (LLMs) on arithmetics and symbolic reasoning tasks. However, the mechanism behind CoT remains unclear. This work provides a theoretical understanding of the power of CoT for decoder-only transformers through the lens of expressiveness. Conceptually, CoT empowers the model with the ability to perform inherently serial computation, which is otherwise lacking in transformers, especially when depth is low. Given input length $n$, previous works have shown that constant-depth transformers with finite precision $\mathsf{poly}(n)$ embedding size can only solve problems in $\mathsf{TC}^0$ without CoT. We first show an even tighter expressiveness upper bound for constant-depth transformers with constant-bit precision, which can only solve problems in $\mathsf{AC}^0$, a proper subset of $ \mathsf{TC}^0$. However, with $T$ steps of CoT, constant-depth transformers using constant-bit precision and $O(\log n)$ embedding size can solve any problem solvable by boolean circuits of size $T$. Empirically, enabling CoT dramatically improves the accuracy for tasks that are hard for parallel computation, including the composition of permutation groups, iterated squaring, and circuit value problems, especially for low-depth transformers.

Solving a system of $m$ multivariate quadratic equations in $n$ variables over finite fields (the MQ problem) is one of the important problems in the theory of computer science. The XL algorithm (XL for short) is a major approach for solving the MQ problem with linearization over a coefficient field. Furthermore, the hybrid approach with XL (h-XL) is a variant of XL guessing some variables beforehand. In this paper, we present a variant of h-XL, which we call the \textit{polynomial XL (PXL)}. In PXL, the whole $n$ variables are divided into $k$ variables to be fixed and the remaining $n-k$ variables as ``main variables'', and we generate a Macaulay matrix with respect to the $n-k$ main variables over a polynomial ring of the $k$ (sub-)variables. By eliminating some columns of the Macaulay matrix over the polynomial ring before guessing $k$ variables, the amount of operations required for each guessed value can be reduced compared with h-XL. Our complexity analysis of PXL (under some practical assumptions and heuristics) gives a new theoretical bound, and it indicates that PXL could be more efficient than other algorithms in theory on the random system with $n=m$, which is the case of general multivariate signatures. For example, on systems over the finite field with ${2^8}$ elements with $n=m=80$, the numbers of operations deduced from the theoretical bounds of the hybrid approaches with XL and Wiedemann XL, Crossbred, and PXL with optimal $k$ are estimated as $2^{252}$, $2^{234}$, $2^{237}$, and $2^{220}$, respectively.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

北京阿比特科技有限公司