This paper introduces DiffTORI, which utilizes Differentiable Trajectory Optimization as the policy representation to generate actions for deep Reinforcement and Imitation learning. Trajectory optimization is a powerful and widely used algorithm in control, parameterized by a cost and a dynamics function. The key to our approach is to leverage the recent progress in differentiable trajectory optimization, which enables computing the gradients of the loss with respect to the parameters of trajectory optimization. As a result, the cost and dynamics functions of trajectory optimization can be learned end-to-end. DiffTORI addresses the ``objective mismatch'' issue of prior model-based RL algorithms, as the dynamics model in DiffTORI is learned to directly maximize task performance by differentiating the policy gradient loss through the trajectory optimization process. We further benchmark DiffTORI for imitation learning on standard robotic manipulation task suites with high-dimensional sensory observations and compare our method to feed-forward policy classes as well as Energy-Based Models (EBM) and Diffusion. Across 15 model-based RL tasks and 35 imitation learning tasks with high-dimensional image and point cloud inputs, DiffTORI outperforms prior state-of-the-art methods in both domains.
Despite the significant advancements in Text-to-SQL (Text2SQL) facilitated by large language models (LLMs), the latest state-of-the-art techniques are still trapped in the in-context learning of closed-source LLMs (e.g., GPT-4), which limits their applicability in open scenarios. To address this challenge, we propose a novel RObust mUltitask Tuning and collaboration mEthod (ROUTE) to improve the comprehensive capabilities of open-source LLMs for Text2SQL, thereby providing a more practical solution. Our approach begins with multi-task supervised fine-tuning (SFT) using various synthetic training data related to SQL generation. Unlike existing SFT-based Text2SQL methods, we introduced several additional SFT tasks, including schema linking, noise correction, and continuation writing. Engaging in a variety of SQL generation tasks enhances the model's understanding of SQL syntax and improves its ability to generate high-quality SQL queries. Additionally, inspired by the collaborative modes of LLM agents, we introduce a Multitask Collaboration Prompting (MCP) strategy. This strategy leverages collaboration across several SQL-related tasks to reduce hallucinations during SQL generation, thereby maximizing the potential of enhancing Text2SQL performance through explicit multitask capabilities. Extensive experiments and in-depth analyses have been performed on eight open-source LLMs and five widely-used benchmarks. The results demonstrate that our proposal outperforms the latest Text2SQL methods and yields leading performance.
We introduce Olympus, a new approach that transforms Multimodal Large Language Models (MLLMs) into a unified framework capable of handling a wide array of computer vision tasks. Utilizing a controller MLLM, Olympus delegates over 20 specialized tasks across images, videos, and 3D objects to dedicated modules. This instruction-based routing enables complex workflows through chained actions without the need for training heavy generative models. Olympus easily integrates with existing MLLMs, expanding their capabilities with comparable performance. Experimental results demonstrate that Olympus achieves an average routing accuracy of 94.75% across 20 tasks and precision of 91.82% in chained action scenarios, showcasing its effectiveness as a universal task router that can solve a diverse range of computer vision tasks. Project page: //yuanze-lin.me/Olympus_page/
In this paper, we investigate whether current state-of-the-art large language models (LLMs) are effective as AI tutors and whether they demonstrate pedagogical abilities necessary for good AI tutoring in educational dialogues. Previous efforts towards evaluation have been limited to subjective protocols and benchmarks. To bridge this gap, we propose a unified evaluation taxonomy with eight pedagogical dimensions based on key learning sciences principles, which is designed to assess the pedagogical value of LLM-powered AI tutor responses grounded in student mistakes or confusion in the mathematical domain. We release MRBench -- a new evaluation benchmark containing 192 conversations and 1,596 responses from seven state-of-the-art LLM-based and human tutors, providing gold annotations for eight pedagogical dimensions. We assess reliability of the popular Prometheus2 LLM as an evaluator and analyze each tutor's pedagogical abilities, highlighting which LLMs are good tutors and which ones are more suitable as question-answering systems. We believe that the presented taxonomy, benchmark, and human-annotated labels will streamline the evaluation process and help track the progress in AI tutors' development.
Most static program analyses depend on Call Graphs (CGs), including reachability of security vulnerabilities. Static CGs ensure soundness through over-approximation, which results in inflated sizes and imprecision. Recent research has employed machine learning (ML) models to prune false edges and enhance CG precision. However, these models require real-world programs with high test coverage to generalize effectively and the inference is expensive. In this paper, we present OriginPruner, a novel call graph pruning technique that leverages the method origin, which is where a method signature is first introduced within a class hierarchy. By incorporating insights from a localness analysis that investigated the scope of method interactions into our approach, OriginPruner confidently identifies and prunes edges related to these origin methods. Our key findings reveal that (1) dominant origin methods, such as Iterator.next, significantly impact CG sizes; (2) derivatives of these origin methods are primarily local, enabling safe pruning without affecting downstream inter-procedural analyses; (3) OriginPruner achieves a significant reduction in CG size while maintaining the soundness of CGs for security applications like vulnerability propagation analysis; and (4) OriginPruner introduces minimal computational overhead. These findings underscore the potential of leveraging domain knowledge about the type system for more effective CG pruning, offering a promising direction for future work in static program analysis.
Recent developments in Generative Artificial Intelligence (GenAI) have created significant uncertainty in education, particularly in terms of assessment practices. Against this backdrop, we present an updated version of the AI Assessment Scale (AIAS), a framework with two fundamental purposes: to facilitate open dialogue between educators and students about appropriate GenAI use and to support educators in redesigning assessments in an era of expanding AI capabilities. Grounded in social constructivist principles and designed with assessment validity in mind, the AIAS provides a structured yet flexible approach that can be adapted across different educational contexts. Building on implementation feedback from global adoption across both the K-12 and higher education contexts, this revision represents a significant change from the original AIAS. Among these changes is a new visual guide that moves beyond the original traffic light system and utilises a neutral colour palette that avoids implied hierarchies between the levels. The scale maintains five distinct levels of GenAI integration in assessment, from "No AI" to "AI Exploration", but has been refined to better reflect rapidly advancing technological capabilities and emerging pedagogical needs. This paper presents the theoretical foundations of the revised framework, provides detailed implementation guidance through practical vignettes, and discusses its limitations and future directions. As GenAI capabilities continue to expand, particularly in multimodal content generation, the AIAS offers a starting point for reimagining assessment design in an era of disruptive technologies.
This paper studies the estimation of large precision matrices and Cholesky factors obtained by observing a Gaussian process at many locations. Under general assumptions on the precision and the observations, we show that the sample complexity scales poly-logarithmically with the size of the precision matrix and its Cholesky factor. The key challenge in these estimation tasks is the polynomial growth of the condition number of the target matrices with their size. For precision estimation, our theory hinges on an intuitive local regression technique on the lattice graph which exploits the approximate sparsity implied by the screening effect. For Cholesky factor estimation, we leverage a block-Cholesky decomposition recently used to establish complexity bounds for sparse Cholesky factorization.
Large Language Models (LLMs) have achieved remarkable success across various industries due to their exceptional generative capabilities. However, for safe and effective real-world deployments, ensuring honesty and helpfulness is critical. This paper addresses the question: Can we prioritize the helpfulness of LLMs while preserving their honesty? To begin with, we establish exhaustive principles aimed at guaranteeing the honesty of LLM. Additionally, we introduce a novel dataset, referred to as HoneSet, comprising 930 queries spanning six categories meticulously crafted to assess an LLM's capacity for maintaining honesty. Subsequently, we present two approaches to augmenting honesty and helpfulness in LLMs: a training-free enhancement and a fine-tuning-based improvement. The training-free approach, which is based on curiosity-driven prompting, empowers LLMs to articulate internal confusion and uncertainty regarding queries, thereby optimizing their responses. Conversely, the fine-tuning-based method employs a two-stage process inspired by curriculum learning: initially instructing LLMs to discern between honest and dishonest responses, then refining their training to enhance helpfulness. Experiments conducted on nine prominent LLMs demonstrate a significant improvement in alignment with honesty across all models through the implementation of our proposed enhancements. Particularly noteworthy is the 65.3% enhancement observed in Llama3-8b and the remarkable 124.7% improvement in Mistral-7b, as measured by the H$^{2}$ (honest and helpful) assessment. We believe that our work can pave the way for developing more trustworthy LLMs for real-world applications.
In this paper, we present HalluCana, a canary lookahead to detect and correct factuality hallucinations of Large Language Models (LLMs) in long-form generation. HalluCana detects and intervenes as soon as traces of hallucination emerge, during and even before generation. To support timely detection, we exploit the internal factuality representation in the LLM hidden space, where we investigate various proxies to the LLMs' factuality self-assessment, and discuss its relation to the models' context familiarity from their pre-training. On biography generation, our method improves generation quality by up to 2.5x, while consuming over 6 times less compute.
This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.
We propose UniViLM: a Unified Video and Language pre-training Model for multimodal understanding and generation. Motivated by the recent success of BERT based pre-training technique for NLP and image-language tasks, VideoBERT and CBT are proposed to exploit BERT model for video and language pre-training using narrated instructional videos. Different from their works which only pre-train understanding task, we propose a unified video-language pre-training model for both understanding and generation tasks. Our model comprises of 4 components including two single-modal encoders, a cross encoder and a decoder with the Transformer backbone. We first pre-train our model to learn the universal representation for both video and language on a large instructional video dataset. Then we fine-tune the model on two multimodal tasks including understanding task (text-based video retrieval) and generation task (multimodal video captioning). Our extensive experiments show that our method can improve the performance of both understanding and generation tasks and achieves the state-of-the art results.