Central Bank Digital Currency (CBDC) is a novel form of money that could be issued and regulated by central banks, offering benefits such as programmability, security, and privacy. However, the design of a CBDC system presents numerous technical and social challenges. This paper presents the design and prototype of a non-custodial wallet, a device that enables users to store and spend CBDC in various contexts. To address the challenges of designing a CBDC system, we conducted a series of workshops with internal and external stakeholders, using methods such as storytelling, metaphors, and provotypes to communicate CBDC concepts, elicit user feedback and critique, and incorporate normative values into the technical design. We derived basic guidelines for designing CBDC systems that balance technical and social aspects, and reflect user needs and values. Our paper contributes to the CBDC discourse by demonstrating a practical example of how CBDC could be used in everyday life and by highlighting the importance of a user-centred approach.
The availability of data is limited in some fields, especially for object detection tasks, where it is necessary to have correctly labeled bounding boxes around each object. A notable example of such data scarcity is found in the domain of marine biology, where it is useful to develop methods to automatically detect submarine species for environmental monitoring. To address this data limitation, the state-of-the-art machine learning strategies employ two main approaches. The first involves pretraining models on existing datasets before generalizing to the specific domain of interest. The second strategy is to create synthetic datasets specifically tailored to the target domain using methods like copy-paste techniques or ad-hoc simulators. The first strategy often faces a significant domain shift, while the second demands custom solutions crafted for the specific task. In response to these challenges, here we propose a transfer learning framework that is valid for a generic scenario. In this framework, generated images help to improve the performances of an object detector in a few-real data regime. This is achieved through a diffusion-based generative model that was pretrained on large generic datasets. With respect to the state-of-the-art, we find that it is not necessary to fine tune the generative model on the specific domain of interest. We believe that this is an important advance because it mitigates the labor-intensive task of manual labeling the images in object detection tasks. We validate our approach focusing on fishes in an underwater environment, and on the more common domain of cars in an urban setting. Our method achieves detection performance comparable to models trained on thousands of images, using only a few hundreds of input data. Our results pave the way for new generative AI-based protocols for machine learning applications in various domains.
We consider Maxwell eigenvalue problems on uncertain shapes with perfectly conducting TESLA cavities being the driving example. Due to the shape uncertainty the resulting eigenvalues and eigenmodes are also uncertain and it is well known that the eigenvalues may exhibit crossings or bifurcations under perturbation. We discuss how the shape uncertainties can be modelled using the domain mapping approach and how the deformation mapping can be expressed as coefficients in Maxwell's equations. Using derivatives of these coefficients and derivatives of the eigenpairs, we follow a perturbation approach to compute approximations of mean and covariance of the eigenpairs. For small perturbations these approximations are faster and more accurate than sampling or surrogate model strategies. For the implementation we use an approach based on isogeometric analysis, which allows for straightforward modelling of the domain deformations and computation of the required derivatives. Numerical experiments for a three-dimensional 9-cell TESLA cavity are presented.
Nonparametric estimators for the mean and the covariance functions of functional data are proposed. The setup covers a wide range of practical situations. The random trajectories are, not necessarily differentiable, have unknown regularity, and are measured with error at discrete design points. The measurement error could be heteroscedastic. The design points could be either randomly drawn or common for all curves. The estimators depend on the local regularity of the stochastic process generating the functional data. We consider a simple estimator of this local regularity which exploits the replication and regularization features of functional data. Next, we use the ``smoothing first, then estimate'' approach for the mean and the covariance functions. They can be applied with both sparsely or densely sampled curves, are easy to calculate and to update, and perform well in simulations. Simulations built upon an example of real data set, illustrate the effectiveness of the new approach.
In this paper we propose a Monte Carlo maximum likelihood estimation strategy for discretely observed Wright-Fisher diffusions. Our approach provides an unbiased estimator of the likelihood function and is based on exact simulation techniques that are of special interest for diffusion processes defined on a bounded domain, where numerical methods typically fail to remain within the required boundaries. We start by building unbiased likelihood estimators for scalar diffusions and later present an extension to the multidimensional case. Consistency results of our proposed estimator are also presented and the performance of our method is illustrated through numerical examples.
Latent variable models serve as powerful tools to infer underlying dynamics from observed neural activity. However, due to the absence of ground truth data, prediction benchmarks are often employed as proxies. In this study, we reveal the limitations of the widely-used 'co-smoothing' prediction framework and propose an improved few-shot prediction approach that encourages more accurate latent dynamics. Utilizing a student-teacher setup with Hidden Markov Models, we demonstrate that the high co-smoothing model space can encompass models with arbitrary extraneous dynamics within their latent representations. To address this, we introduce a secondary metric -- a few-shot version of co-smoothing. This involves performing regression from the latent variables to held-out channels in the data using fewer trials. Our results indicate that among models with near-optimal co-smoothing, those with extraneous dynamics underperform in the few-shot co-smoothing compared to 'minimal' models devoid of such dynamics. We also provide analytical insights into the origin of this phenomenon. We further validate our findings on real neural data using two state-of-the-art methods: LFADS and STNDT. In the absence of ground truth, we suggest a proxy measure to quantify extraneous dynamics. By cross-decoding the latent variables of all model pairs with high co-smoothing, we identify models with minimal extraneous dynamics. We find a correlation between few-shot co-smoothing performance and this new measure. In summary, we present a novel prediction metric designed to yield latent variables that more accurately reflect the ground truth, offering a significant improvement for latent dynamics inference.
There has been a resurgence of interest in the asymptotic normality of incomplete U-statistics that only sum over roughly as many kernel evaluations as there are data samples, due to its computational efficiency and usefulness in quantifying the uncertainty for ensemble-based predictions. In this paper, we focus on the normal convergence of one such construction, the incomplete U-statistic with Bernoulli sampling, based on a raw sample of size $n$ and a computational budget $N$ in the same order as $n$. Under a minimalistic third moment assumption on the kernel, we offer an accompanying Berry-Esseen bound of the natural rate $1/\sqrt{\min(N, n)}$ that characterizes the normal approximating accuracy involved. Our key techniques include Stein's method specialized for the so-called Studentized nonlinear statistics, and an exponential lower tail bound for non-negative kernel U-statistics.
Most popular benchmarks for comparing LLMs rely on a limited set of prompt templates, which may not fully capture the LLMs' abilities and can affect the reproducibility of results on leaderboards. Many recent works empirically verify prompt sensitivity and advocate for changes in LLM evaluation. In this paper, we consider the problem of estimating the performance distribution across many prompt variants instead of finding a single prompt to evaluate with. We introduce PromptEval, a method for estimating performance across a large set of prompts borrowing strength across prompts and examples to produce accurate estimates under practical evaluation budgets. The resulting distribution can be used to obtain performance quantiles to construct various robust performance metrics (e.g., top 95% quantile or median). We prove that PromptEval consistently estimates the performance distribution and demonstrate its efficacy empirically on three prominent LLM benchmarks: MMLU, BIG-bench Hard, and LMentry. For example, PromptEval can accurately estimate performance quantiles across 100 prompt templates on MMLU with a budget equivalent to two single-prompt evaluations. Our code and data can be found at //github.com/felipemaiapolo/prompt-eval.
To date, most investigations on surprisal and entropy effects in reading have been conducted on the group level, disregarding individual differences. In this work, we revisit the predictive power of surprisal and entropy measures estimated from a range of language models (LMs) on data of human reading times as a measure of processing effort by incorporating information of language users' cognitive capacities. To do so, we assess the predictive power of surprisal and entropy estimated from generative LMs on reading data obtained from individuals who also completed a wide range of psychometric tests. Specifically, we investigate if modulating surprisal and entropy relative to cognitive scores increases prediction accuracy of reading times, and we examine whether LMs exhibit systematic biases in the prediction of reading times for cognitively high- or low-performing groups, revealing what type of psycholinguistic subject a given LM emulates. Our study finds that in most cases, incorporating cognitive capacities increases predictive power of surprisal and entropy on reading times, and that generally, high performance in the psychometric tests is associated with lower sensitivity to predictability effects. Finally, our results suggest that the analyzed LMs emulate readers with lower verbal intelligence, suggesting that for a given target group (i.e., individuals with high verbal intelligence), these LMs provide less accurate predictability estimates.
Problems from metric graph theory like Metric Dimension, Geodetic Set, and Strong Metric Dimension have recently had a strong impact in parameterized complexity by being the first known problems in NP to admit double-exponential lower bounds in the treewidth, and even in the vertex cover number for the latter, assuming the Exponential Time Hypothesis. We initiate the study of enumerating minimal solution sets for these problems and show that they are also of great interest in enumeration. Specifically, we show that enumerating minimal resolving sets in graphs and minimal geodetic sets in split graphs are equivalent to enumerating minimal transversals in hypergraphs (denoted Trans-Enum), whose solvability in total-polynomial time is one of the most important open problems in algorithmic enumeration. This provides two new natural examples to a question that emerged in recent works: for which vertex (or edge) set graph property $\Pi$ is the enumeration of minimal (or maximal) subsets satisfying $\Pi$ equivalent to Trans-Enum? As very few properties are known to fit within this context -- namely, those related to minimal domination -- our results make significant progress in characterizing such properties, and provide new angles to approach Trans-Enum. In contrast, we observe that minimal strong resolving sets can be enumerated with polynomial delay. Additionally, we consider cases where our reductions do not apply, namely graphs with no long induced paths, and show both positive and negative results related to the enumeration and extension of partial solutions.
CSS-T codes were recently introduced as quantum error-correcting codes that respect a transversal gate. A CSS-T code depends on a CSS-T pair, which is a pair of binary codes $(C_1, C_2)$ such that $C_1$ contains $C_2$, $C_2$ is even, and the shortening of the dual of $C_1$ with respect to the support of each codeword of $C_2$ is self-dual. In this paper, we give new conditions to guarantee that a pair of binary codes $(C_1, C_2)$ is a CSS-T pair. We define the poset of CSS-T pairs and determine the minimal and maximal elements of the poset. We provide a propagation rule for nondegenerate CSS-T codes. We apply some main results to Reed-Muller, cyclic, and extended cyclic codes. We characterize CSS-T pairs of cyclic codes in terms of the defining cyclotomic cosets. We find cyclic and extended cyclic codes to obtain quantum codes with better parameters than those in the literature.