To defend the inference attacks and mitigate the sensitive information leakages in Federated Learning (FL), client-level Differentially Private FL (DPFL) is the de-facto standard for privacy protection by clipping local updates and adding random noise. However, existing DPFL methods tend to make a sharper loss landscape and have poorer weight perturbation robustness, resulting in severe performance degradation. To alleviate these issues, we propose a novel DPFL algorithm named DP-FedSAM, which leverages gradient perturbation to mitigate the negative impact of DP. Specifically, DP-FedSAM integrates Sharpness Aware Minimization (SAM) optimizer to generate local flatness models with better stability and weight perturbation robustness, which results in the small norm of local updates and robustness to DP noise, thereby improving the performance. From the theoretical perspective, we analyze in detail how DP-FedSAM mitigates the performance degradation induced by DP. Meanwhile, we give rigorous privacy guarantees with R\'enyi DP and present the sensitivity analysis of local updates. At last, we empirically confirm that our algorithm achieves state-of-the-art (SOTA) performance compared with existing SOTA baselines in DPFL.
We propose FedGT, a novel framework for identifying malicious clients in federated learning with secure aggregation. Inspired by group testing, the framework leverages overlapping groups of clients to detect the presence of malicious clients in the groups and to identify them via a decoding operation. The identified clients are then removed from the training of the model, which is performed over the remaining clients. FedGT strikes a balance between privacy and security, allowing for improved identification capabilities while still preserving data privacy. Specifically, the server learns the aggregated model of the clients in each group. The effectiveness of FedGT is demonstrated through extensive experiments on the MNIST and CIFAR-10 datasets, showing its ability to identify malicious clients with low misdetection and false alarm probabilities, resulting in high model utility.
Conventionally, federated learning aims to optimize a single objective, typically the utility. However, for a federated learning system to be trustworthy, it needs to simultaneously satisfy multiple/many objectives, such as maximizing model performance, minimizing privacy leakage and training cost, and being robust to malicious attacks. Multi-Objective Optimization (MOO) aiming to optimize multiple conflicting objectives at the same time is quite suitable for solving the optimization problem of Trustworthy Federated Learning (TFL). In this paper, we unify MOO and TFL by formulating the problem of constrained multi-objective federated learning (CMOFL). Under this formulation, existing MOO algorithms can be adapted to TFL straightforwardly. Different from existing CMOFL works focusing on utility, efficiency, fairness, and robustness, we consider optimizing privacy leakage along with utility loss and training cost, the three primary objectives of a TFL system. We develop two improved CMOFL algorithms based on NSGA-II and PSL, respectively, for effectively and efficiently finding Pareto optimal solutions, and we provide theoretical analysis on their convergence. We design specific measurements of privacy leakage, utility loss, and training cost for three privacy protection mechanisms: Randomization, BatchCrypt (An efficient version of homomorphic encryption), and Sparsification. Empirical experiments conducted under each of the three protection mechanisms demonstrate the effectiveness of our proposed algorithms.
In this paper, we address the optimization problem of moments of Age of Information (AoI) for active and passive users in a random access network. In this network, active users broadcast sensing data while passive users only receive signals. Collisions occur when multiple active users transmit simultaneously, and passive users are unable to receive signals while any active user is transmitting. Each active user follows a Markov process for their transmissions. We aim to minimize the weighted sum of any moments of AoI for both active and passive users in this network. To achieve this, we employ a second-order analysis to analyze the system. Specifically, we characterize an active user's transmission Markov process by its mean and temporal process. We show that any moment of the AoI can be expressed a function of the mean and temporal variance, which, in turn, enables us to derive the optimal transmission Markov process. Our simulation results demonstrate that this proposed strategy outperforms other baseline policies that use different active user transmission models.
We propose a novel hierarchical Bayesian approach to Federated Learning (FL), where our model reasonably describes the generative process of clients' local data via hierarchical Bayesian modeling: constituting random variables of local models for clients that are governed by a higher-level global variate. Interestingly, the variational inference in our Bayesian model leads to an optimisation problem whose block-coordinate descent solution becomes a distributed algorithm that is separable over clients and allows them not to reveal their own private data at all, thus fully compatible with FL. We also highlight that our block-coordinate algorithm has particular forms that subsume the well-known FL algorithms including Fed-Avg and Fed-Prox as special cases. Beyond introducing novel modeling and derivations, we also offer convergence analysis showing that our block-coordinate FL algorithm converges to an (local) optimum of the objective at the rate of $O(1/\sqrt{t})$, the same rate as regular (centralised) SGD, as well as the generalisation error analysis where we prove that the test error of our model on unseen data is guaranteed to vanish as we increase the training data size, thus asymptotically optimal.
Distributed Machine Learning (DML) systems are utilized to enhance the speed of model training in data centers (DCs) and edge nodes. The Parameter Server (PS) communication architecture is commonly employed, but it faces severe long-tail latency caused by many-to-one "incast" traffic patterns, negatively impacting training throughput. To address this challenge, we design the \textbf{L}oss-tolerant \textbf{T}ransmission \textbf{P}rotocol (LTP), which permits partial loss of gradients during synchronization to avoid unneeded retransmission and contributes to faster synchronization per iteration. LTP implements loss-tolerant transmission through \textit{out-of-order transmission} and \textit{out-of-order Acknowledges (ACKs)}. LTP employs \textit{Early Close} to adjust the loss-tolerant threshold based on network conditions and \textit{Bubble Filling} for data correction to maintain training accuracy. LTP is implemented by C++ and integrated into PyTorch. Evaluations on a testbed of 8 worker nodes and one PS node demonstrate that LTP can significantly improve DML training task throughput by up to 30x compared to traditional TCP congestion controls, with no sacrifice to final accuracy.
Conventional recommender systems are required to train the recommendation model using a centralized database. However, due to data privacy concerns, this is often impractical when multi-parties are involved in recommender system training. Federated learning appears as an excellent solution to the data isolation and privacy problem. Recently, Graph neural network (GNN) is becoming a promising approach for federated recommender systems. However, a key challenge is to conduct embedding propagation while preserving the privacy of the graph structure. Few studies have been conducted on the federated GNN-based recommender system. Our study proposes the first vertical federated GNN-based recommender system, called VerFedGNN. We design a framework to transmit: (i) the summation of neighbor embeddings using random projection, and (ii) gradients of public parameter perturbed by ternary quantization mechanism. Empirical studies show that VerFedGNN has competitive prediction accuracy with existing privacy preserving GNN frameworks while enhanced privacy protection for users' interaction information.
This paper is the first to attempt differentially private (DP) topological data analysis (TDA), producing near-optimal private persistence diagrams. We analyze the sensitivity of persistence diagrams in terms of the bottleneck distance, and we show that the commonly used \v{C}ech complex has sensitivity that does not decrease as the sample size $n$ increases. This makes it challenging for the persistence diagrams of \v{C}ech complexes to be privatized. As an alternative, we show that the persistence diagram obtained by the $L^1$-distance to measure (DTM) has sensitivity $O(1/n)$. Based on the sensitivity analysis, we propose using the exponential mechanism whose utility function is defined in terms of the bottleneck distance of the $L^1$-DTM persistence diagrams. We also derive upper and lower bounds of the accuracy of our privacy mechanism; the obtained bounds indicate that the privacy error of our mechanism is near-optimal. We demonstrate the performance of our privatized persistence diagrams through simulations as well as on a real dataset tracking human movement.
Federated learning (FL) has been proposed to protect data privacy and virtually assemble the isolated data silos by cooperatively training models among organizations without breaching privacy and security. However, FL faces heterogeneity from various aspects, including data space, statistical, and system heterogeneity. For example, collaborative organizations without conflict of interest often come from different areas and have heterogeneous data from different feature spaces. Participants may also want to train heterogeneous personalized local models due to non-IID and imbalanced data distribution and various resource-constrained devices. Therefore, heterogeneous FL is proposed to address the problem of heterogeneity in FL. In this survey, we comprehensively investigate the domain of heterogeneous FL in terms of data space, statistical, system, and model heterogeneity. We first give an overview of FL, including its definition and categorization. Then, We propose a precise taxonomy of heterogeneous FL settings for each type of heterogeneity according to the problem setting and learning objective. We also investigate the transfer learning methodologies to tackle the heterogeneity in FL. We further present the applications of heterogeneous FL. Finally, we highlight the challenges and opportunities and envision promising future research directions toward new framework design and trustworthy approaches.
The cyber-threat landscape has evolved tremendously in recent years, with new threat variants emerging daily, and large-scale coordinated campaigns becoming more prevalent. In this study, we propose CELEST (CollaborativE LEarning for Scalable Threat detection), a federated machine learning framework for global threat detection over HTTP, which is one of the most commonly used protocols for malware dissemination and communication. CELEST leverages federated learning in order to collaboratively train a global model across multiple clients who keep their data locally, thus providing increased privacy and confidentiality assurances. Through a novel active learning component integrated with the federated learning technique, our system continuously discovers and learns the behavior of new, evolving, and globally-coordinated cyber threats. We show that CELEST is able to expose attacks that are largely invisible to individual organizations. For instance, in one challenging attack scenario with data exfiltration malware, the global model achieves a three-fold increase in Precision-Recall AUC compared to the local model. We deploy CELEST on two university networks and show that it is able to detect the malicious HTTP communication with high precision and low false positive rates. Furthermore, during its deployment, CELEST detected a set of previously unknown 42 malicious URLs and 20 malicious domains in one day, which were confirmed to be malicious by VirusTotal.
As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.