Precision robotic manipulation tasks (insertion, screwing, precisely pick, precisely place) are required in many scenarios. Previous methods achieved good performance on such manipulation tasks. However, such methods typically require tedious calibration or expensive sensors. 3D/RGB-D cameras and torque/force sensors add to the cost of the robotic application and may not always be economical. In this work, we aim to solve these but using only weak-calibrated and low-cost webcams. We propose Binocular Alignment Learning (BAL), which could automatically learn the eye-hand coordination and points alignment capabilities to solve the four tasks. Our work focuses on working with unknown eye-hand coordination and proposes different ways of performing eye-in-hand camera calibration automatically. The algorithm was trained in simulation and used a practical pipeline to achieve sim2real and test it on the real robot. Our method achieves a competitively good result with minimal cost on the four tasks.
Deep robot vision models are widely used for recognizing objects from camera images, but shows poor performance when detecting objects at untrained positions. Although such problem can be alleviated by training with large datasets, the dataset collection cost cannot be ignored. Existing visual attention models tackled the problem by employing a data efficient structure which learns to extract task relevant image areas. However, since the models cannot modify attention targets after training, it is difficult to apply to dynamically changing tasks. This paper proposed a novel Key-Query-Value formulated visual attention model. This model is capable of switching attention targets by externally modifying the Query representations, namely top-down attention. The proposed model is experimented on a simulator and a real-world environment. The model was compared to existing end-to-end robot vision models in the simulator experiments, showing higher performance and data efficiency. In the real-world robot experiments, the model showed high precision along with its scalability and extendibility.
Deep Reinforcement Learning (RL) is mainly studied in a setting where the training and the testing environments are similar. But in many practical applications, these environments may differ. For instance, in control systems, the robot(s) on which a policy is learned might differ from the robot(s) on which a policy will run. It can be caused by different internal factors (e.g., calibration issues, system attrition, defective modules) or also by external changes (e.g., weather conditions). There is a need to develop RL methods that generalize well to variations of the training conditions. In this article, we consider the simplest yet hard to tackle generalization setting where the test environment is unknown at train time, forcing the agent to adapt to the system's new dynamics. This online adaptation process can be computationally expensive (e.g., fine-tuning) and cannot rely on meta-RL techniques since there is just a single train environment. To do so, we propose an approach where we learn a subspace of policies within the parameter space. This subspace contains an infinite number of policies that are trained to solve the training environment while having different parameter values. As a consequence, two policies in that subspace process information differently and exhibit different behaviors when facing variations of the train environment. Our experiments carried out over a large variety of benchmarks compare our approach with baselines, including diversity-based methods. In comparison, our approach is simple to tune, does not need any extra component (e.g., discriminator) and learns policies able to gather a high reward on unseen environments.
Visual reinforcement learning (RL), which makes decisions directly from high-dimensional visual inputs, has demonstrated significant potential in various domains. However, deploying visual RL techniques in the real world remains challenging due to their low sample efficiency and large generalization gaps. To tackle these obstacles, data augmentation (DA) has become a widely used technique in visual RL for acquiring sample-efficient and generalizable policies by diversifying the training data. This survey aims to provide a timely and essential review of DA techniques in visual RL in recognition of the thriving development in this field. In particular, we propose a unified framework for analyzing visual RL and understanding the role of DA in it. We then present a principled taxonomy of the existing augmentation techniques used in visual RL and conduct an in-depth discussion on how to better leverage augmented data in different scenarios. Moreover, we report a systematic empirical evaluation of DA-based techniques in visual RL and conclude by highlighting the directions for future research. As the first comprehensive survey of DA in visual RL, this work is expected to offer valuable guidance to this emerging field.
Multi-agent reinforcement learning(MARL) is a prevalent learning paradigm for solving stochastic games. In previous studies, agents in a game are defined to be teammates or enemies beforehand, and the relation of the agents is fixed throughout the game. Those works can hardly work in the games where the competitive and collaborative relationships are not public and dynamically changing, which is decided by the \textit{identities} of the agents. How to learn a successful policy in such a situation where the identities of agents are ambiguous is still a problem. Focusing on this problem, in this work, we develop a novel MARL framework: IDRL, which identifies the identities of the agents dynamically and then chooses the corresponding policy to perform in the task. In the IDRL framework, a relation network is constructed to deduce the identities of the multi-agents through feeling the kindness and hostility unleashed by other agents; a dangerous network is built to estimate the risk of the identification. We also propose an intrinsic reward to help train the relation network and the dangerous network to get a trade-off between the need to maximize external reward and the accuracy of identification. After identifying the cooperation-competition pattern among the agents, the proposed method IDRL applies one of the off-the-shelf MARL methods to learn the policy. Taking the poker game \textit{red-10} as the experiment environment, experiments show that the IDRL can achieve superior performance compared to the other MARL methods. Significantly, the relation network has the par performance to identify the identities of agents with top human players; the dangerous network reasonably avoids the risk of imperfect identification.
Robotic manipulation stands as a largely unsolved problem despite significant advances in robotics and machine learning in recent years. One of the key challenges in manipulation is the exploration of the dynamics of the environment when there is continuous contact between the objects being manipulated. This paper proposes a model-based active exploration approach that enables efficient learning in sparse-reward robotic manipulation tasks. The proposed method estimates an information gain objective using an ensemble of probabilistic models and deploys model predictive control (MPC) to plan actions online that maximize the expected reward while also performing directed exploration. We evaluate our proposed algorithm in simulation and on a real robot, trained from scratch with our method, on a challenging ball pushing task on tilted tables, where the target ball position is not known to the agent a-priori. Our real-world robot experiment serves as a fundamental application of active exploration in model-based reinforcement learning of complex robotic manipulation tasks.
Deep reinforcement learning has shown promising results on an abundance of robotic tasks in simulation, including visual navigation and manipulation. Prior work generally aims to build embodied agents that solve their assigned tasks as quickly as possible, while largely ignoring the problems caused by collision with objects during interaction. This lack of prioritization is understandable: there is no inherent cost in breaking virtual objects. As a result, "well-trained" agents frequently collide with objects before achieving their primary goals, a behavior that would be catastrophic in the real world. In this paper, we study the problem of training agents to complete the task of visual mobile manipulation in the ManipulaTHOR environment while avoiding unnecessary collision (disturbance) with objects. We formulate disturbance avoidance as a penalty term in the reward function, but find that directly training with such penalized rewards often results in agents being unable to escape poor local optima. Instead, we propose a two-stage training curriculum where an agent is first allowed to freely explore and build basic competencies without penalization, after which a disturbance penalty is introduced to refine the agent's behavior. Results on testing scenes show that our curriculum not only avoids these poor local optima, but also leads to 10% absolute gains in success rate without disturbance, compared to our state-of-the-art baselines. Moreover, our curriculum is significantly more performant than a safe RL algorithm that casts collision avoidance as a constraint. Finally, we propose a novel disturbance-prediction auxiliary task that accelerates learning.
Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.
Meta reinforcement learning (meta-RL) extracts knowledge from previous tasks and achieves fast adaptation to new tasks. Despite recent progress, efficient exploration in meta-RL remains a key challenge in sparse-reward tasks, as it requires quickly finding informative task-relevant experiences in both meta-training and adaptation. To address this challenge, we explicitly model an exploration policy learning problem for meta-RL, which is separated from exploitation policy learning, and introduce a novel empowerment-driven exploration objective, which aims to maximize information gain for task identification. We derive a corresponding intrinsic reward and develop a new off-policy meta-RL framework, which efficiently learns separate context-aware exploration and exploitation policies by sharing the knowledge of task inference. Experimental evaluation shows that our meta-RL method significantly outperforms state-of-the-art baselines on various sparse-reward MuJoCo locomotion tasks and more complex sparse-reward Meta-World tasks.
Seamlessly interacting with humans or robots is hard because these agents are non-stationary. They update their policy in response to the ego agent's behavior, and the ego agent must anticipate these changes to co-adapt. Inspired by humans, we recognize that robots do not need to explicitly model every low-level action another agent will make; instead, we can capture the latent strategy of other agents through high-level representations. We propose a reinforcement learning-based framework for learning latent representations of an agent's policy, where the ego agent identifies the relationship between its behavior and the other agent's future strategy. The ego agent then leverages these latent dynamics to influence the other agent, purposely guiding them towards policies suitable for co-adaptation. Across several simulated domains and a real-world air hockey game, our approach outperforms the alternatives and learns to influence the other agent.
Video captioning is the task of automatically generating a textual description of the actions in a video. Although previous work (e.g. sequence-to-sequence model) has shown promising results in abstracting a coarse description of a short video, it is still very challenging to caption a video containing multiple fine-grained actions with a detailed description. This paper aims to address the challenge by proposing a novel hierarchical reinforcement learning framework for video captioning, where a high-level Manager module learns to design sub-goals and a low-level Worker module recognizes the primitive actions to fulfill the sub-goal. With this compositional framework to reinforce video captioning at different levels, our approach significantly outperforms all the baseline methods on a newly introduced large-scale dataset for fine-grained video captioning. Furthermore, our non-ensemble model has already achieved the state-of-the-art results on the widely-used MSR-VTT dataset.