Speech-to-text services aim to transcribe input audio as accurately as possible. They increasingly play a role in everyday life, for example in personal voice assistants or in customer-company interactions. We evaluate Open AI's Whisper, a state-of-the-art service outperforming industry competitors. While many of Whisper's transcriptions were highly accurate, we found that roughly 1% of audio transcriptions contained entire hallucinated phrases or sentences, which did not exist in any form in the underlying audio. We thematically analyze the Whisper-hallucinated content, finding that 38% of hallucinations include explicit harms such as violence, made up personal information, or false video-based authority. We further provide hypotheses on why hallucinations occur, uncovering potential disparities due to speech type by health status. We call on industry practitioners to ameliorate these language-model-based hallucinations in Whisper, and to raise awareness of potential biases in downstream applications of speech-to-text models.
This paper presents CoverUp, a novel system that drives the generation of high-coverage Python regression tests via a combination of coverage analysis and large-language models (LLMs). CoverUp iteratively improves coverage, interleaving coverage analysis with dialogs with the LLM to focus its attention on as yet uncovered lines and branches. The resulting test suites significantly improve coverage over the current state of the art: compared to CodaMosa, a hybrid LLM / search-based software testing system, CoverUp substantially improves coverage across the board. On a per-module basis, CoverUp achieves median line coverage of 81% (vs. 62%), branch coverage of 53% (vs. 35%) and line+branch coverage of 78% (vs. 55%). We show that CoverUp's iterative, coverage-guided approach is crucial to its effectiveness, contributing to nearly half of its successes.
Mapping words into a fixed-dimensional vector space is the backbone of modern NLP. While most word embedding methods successfully encode semantic information, they overlook phonetic information that is crucial for many tasks. We develop three methods that use articulatory features to build phonetically informed word embeddings. To address the inconsistent evaluation of existing phonetic word embedding methods, we also contribute a task suite to fairly evaluate past, current, and future methods. We evaluate both (1) intrinsic aspects of phonetic word embeddings, such as word retrieval and correlation with sound similarity, and (2) extrinsic performance on tasks such as rhyme and cognate detection and sound analogies. We hope our task suite will promote reproducibility and inspire future phonetic embedding research.
Recent advances in tuning-free personalized image generation based on diffusion models are impressive. However, to improve subject fidelity, existing methods either retrain the diffusion model or infuse it with dense visual embeddings, both of which suffer from poor generalization and efficiency. Also, these methods falter in multi-subject image generation due to the unconstrained cross-attention mechanism. In this paper, we propose MM-Diff, a unified and tuning-free image personalization framework capable of generating high-fidelity images of both single and multiple subjects in seconds. Specifically, to simultaneously enhance text consistency and subject fidelity, MM-Diff employs a vision encoder to transform the input image into CLS and patch embeddings. CLS embeddings are used on the one hand to augment the text embeddings, and on the other hand together with patch embeddings to derive a small number of detail-rich subject embeddings, both of which are efficiently integrated into the diffusion model through the well-designed multimodal cross-attention mechanism. Additionally, MM-Diff introduces cross-attention map constraints during the training phase, ensuring flexible multi-subject image sampling during inference without any predefined inputs (e.g., layout). Extensive experiments demonstrate the superior performance of MM-Diff over other leading methods.
We propose and carry-out a novel method of formative assessment called Assessment via Teaching (AVT), in which learners demonstrate their understanding of CS1 topics by tutoring more novice students. AVT has powerful benefits over traditional forms of assessment: it is centered around service to others and is highly rewarding for the learners who teach. Moreover, teaching greatly improves the learners' own understanding of the material and has a huge positive impact on novices, who receive free 1:1 tutoring. Lastly, this form of assessment is naturally difficult to cheat -- a critical property for assessments in the era of large-language models. We use AVT in a randomised control trial with learners in a CS1 course at an R1 university. The learners provide tutoring sessions to more novice students taking a lagged online version of the same course. We show that learners who do an AVT session before the course exam performed 20 to 30 percentage points better than the class average on several questions. Moreover, compared to students who did a practice exam, the AVT learners enjoyed their experience more and were twice as likely to study for their teaching session. We believe AVT is a scalable and uplifting method for formative assessment that could one day replace traditional exams.
3D content creation from text prompts has shown remarkable success recently. However, current text-to-3D methods often generate 3D results that do not align well with human preferences. In this paper, we present a comprehensive framework, coined DreamReward, to learn and improve text-to-3D models from human preference feedback. To begin with, we collect 25k expert comparisons based on a systematic annotation pipeline including rating and ranking. Then, we build Reward3D -- the first general-purpose text-to-3D human preference reward model to effectively encode human preferences. Building upon the 3D reward model, we finally perform theoretical analysis and present the Reward3D Feedback Learning (DreamFL), a direct tuning algorithm to optimize the multi-view diffusion models with a redefined scorer. Grounded by theoretical proof and extensive experiment comparisons, our DreamReward successfully generates high-fidelity and 3D consistent results with significant boosts in prompt alignment with human intention. Our results demonstrate the great potential for learning from human feedback to improve text-to-3D models.
Face presentation attacks (FPA), also known as face spoofing, have brought increasing concerns to the public through various malicious applications, such as financial fraud and privacy leakage. Therefore, safeguarding face recognition systems against FPA is of utmost importance. Although existing learning-based face anti-spoofing (FAS) models can achieve outstanding detection performance, they lack generalization capability and suffer significant performance drops in unforeseen environments. Many methodologies seek to use auxiliary modality data (e.g., depth and infrared maps) during the presentation attack detection (PAD) to address this limitation. However, these methods can be limited since (1) they require specific sensors such as depth and infrared cameras for data capture, which are rarely available on commodity mobile devices, and (2) they cannot work properly in practical scenarios when either modality is missing or of poor quality. In this paper, we devise an accurate and robust MultiModal Mobile Face Anti-Spoofing system named M3FAS to overcome the issues above. The primary innovation of this work lies in the following aspects: (1) To achieve robust PAD, our system combines visual and auditory modalities using three commonly available sensors: camera, speaker, and microphone; (2) We design a novel two-branch neural network with three hierarchical feature aggregation modules to perform cross-modal feature fusion; (3). We propose a multi-head training strategy, allowing the model to output predictions from the vision, acoustic, and fusion heads, resulting in a more flexible PAD. Extensive experiments have demonstrated the accuracy, robustness, and flexibility of M3FAS under various challenging experimental settings. The source code and dataset are available at: //github.com/ChenqiKONG/M3FAS/
Deep neural networks (DNNs) are becoming progressively large and costly to train. This paper aims to reduce DNN training costs by leveraging preemptible instances on modern clouds, which can be allocated at a much lower price when idle but may be preempted by the cloud provider at any time. Prior work that supports DNN training on preemptive instances employs a reactive approach to handling instance preemptions and allocations after their occurrence, which only achieves limited performance and scalability. We present Parcae, a system that enables cheap, fast, and scalable DNN training on preemptible instances by proactively adjusting the parallelization strategy of a DNN training job to adapt to predicted resource changes before instance preemptions and allocations really happen, which significantly reduces the cost of handling these events. Parcae optimizes liveput, a novel metric that measures the expected training throughput of a DNN job under various possible preemption scenarios. Compared to existing reactive, throughput-optimized systems, Parcae's proactive, live-optimized solution considers both the throughput of a job and its robustness under preemptions. To optimize liveput, Parcae supports lightweight instance migration and uses an availability predictor to forecast future preemptions. It then uses a liveput optimizer to discover an optimal strategy to parallelize DNN training under predicted preemptions. We evaluate Parcae on a variety of DNNs and preemption traces and show that Parcae outperforms existing spot-instance DNN training systems by up to 10$\times$. More importantly, Parcae achieves near-optimal performance for training large DNNs under frequent preemptions, in which case existing approaches cannot make any progress.
We introduce PhotoBot, a framework for fully automated photo acquisition based on an interplay between high-level human language guidance and a robot photographer. We propose to communicate photography suggestions to the user via reference images that are selected from a curated gallery. We leverage a visual language model (VLM) and an object detector to characterize the reference images via textual descriptions and then use a large language model (LLM) to retrieve relevant reference images based on a user's language query through text-based reasoning. To correspond the reference image and the observed scene, we exploit pre-trained features from a vision transformer capable of capturing semantic similarity across marked appearance variations. Using these features, we compute pose adjustments for an RGB-D camera by solving a perspective-n-point (PnP) problem. We demonstrate our approach using a manipulator equipped with a wrist camera. Our user studies show that photos taken by PhotoBot are often more aesthetically pleasing than those taken by users themselves, as measured by human feedback. We also show that PhotoBot can generalize to other reference sources such as paintings.
Graph Neural Networks (GNNs) are information processing architectures for signals supported on graphs. They are presented here as generalizations of convolutional neural networks (CNNs) in which individual layers contain banks of graph convolutional filters instead of banks of classical convolutional filters. Otherwise, GNNs operate as CNNs. Filters are composed with pointwise nonlinearities and stacked in layers. It is shown that GNN architectures exhibit equivariance to permutation and stability to graph deformations. These properties provide a measure of explanation respecting the good performance of GNNs that can be observed empirically. It is also shown that if graphs converge to a limit object, a graphon, GNNs converge to a corresponding limit object, a graphon neural network. This convergence justifies the transferability of GNNs across networks with different number of nodes.
Recurrent neural nets (RNN) and convolutional neural nets (CNN) are widely used on NLP tasks to capture the long-term and local dependencies, respectively. Attention mechanisms have recently attracted enormous interest due to their highly parallelizable computation, significantly less training time, and flexibility in modeling dependencies. We propose a novel attention mechanism in which the attention between elements from input sequence(s) is directional and multi-dimensional (i.e., feature-wise). A light-weight neural net, "Directional Self-Attention Network (DiSAN)", is then proposed to learn sentence embedding, based solely on the proposed attention without any RNN/CNN structure. DiSAN is only composed of a directional self-attention with temporal order encoded, followed by a multi-dimensional attention that compresses the sequence into a vector representation. Despite its simple form, DiSAN outperforms complicated RNN models on both prediction quality and time efficiency. It achieves the best test accuracy among all sentence encoding methods and improves the most recent best result by 1.02% on the Stanford Natural Language Inference (SNLI) dataset, and shows state-of-the-art test accuracy on the Stanford Sentiment Treebank (SST), Multi-Genre natural language inference (MultiNLI), Sentences Involving Compositional Knowledge (SICK), Customer Review, MPQA, TREC question-type classification and Subjectivity (SUBJ) datasets.