亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper we present an adaptive deep density approximation strategy based on KRnet (ADDA-KR) for solving the steady-state Fokker-Planck (F-P) equations. F-P equations are usually high-dimensional and defined on an unbounded domain, which limits the application of traditional grid based numerical methods. With the Knothe-Rosenblatt rearrangement, our newly proposed flow-based generative model, called KRnet, provides a family of probability density functions to serve as effective solution candidates for the Fokker-Planck equations, which has a weaker dependence on dimensionality than traditional computational approaches and can efficiently estimate general high-dimensional density functions. To obtain effective stochastic collocation points for the approximation of the F-P equation, we develop an adaptive sampling procedure, where samples are generated iteratively using the approximate density function at each iteration. We present a general framework of ADDA-KR, validate its accuracy and demonstrate its efficiency with numerical experiments.

相關內容

This paper is concerned with a numerical solution to the scattering of a time-harmonic electromagnetic wave by a bounded and impenetrable obstacle in three dimensions. The electromagnetic wave propagation is modeled by a boundary value problem of Maxwell's equations in the exterior domain of the obstacle. Based on the Dirichlet-to-Neumann (DtN) operator, which is defined by an infinite series, an exact transparent boundary condition is introduced and the scattering problem is reduced equivalently into a bounded domain. An a posteriori error estimate based adaptive finite element DtN method is developed to solve the discrete variational problem, where the DtN operator is truncated into a sum of finitely many terms. The a posteriori error estimate takes into account both the finite element approximation error and the truncation error of the DtN operator. The latter is shown to decay exponentially with respect to the truncation parameter. Numerical experiments are presented to illustrate the effectiveness of the proposed method.

The scope of this paper is the analysis and approximation of an optimal control problem related to the Allen-Cahn equation. A tracking functional is minimized subject to the Allen-Cahn equation using distributed controls that satisfy point-wise control constraints. First and second order necessary and sufficient conditions are proved. The lowest order discontinuous Galerkin - in time - scheme is considered for the approximation of the control to state and adjoint state mappings. Under a suitable restriction on maximum size of the temporal and spatial discretization parameters $k$, $h$ respectively in terms of the parameter $\epsilon$ that describes the thickness of the interface layer, a-priori estimates are proved with constants depending polynomially upon $1/ \epsilon$. Unlike to previous works for the uncontrolled Allen-Cahn problem our approach does not rely on a construction of an approximation of the spectral estimate, and as a consequence our estimates are valid under low regularity assumptions imposed by the optimal control setting. These estimates are also valid in cases where the solution and its discrete approximation do not satisfy uniform space-time bounds independent of $\epsilon$. These estimates and a suitable localization technique, via the second order condition (see \cite{Arada-Casas-Troltzsch_2002,Casas-Mateos-Troltzsch_2005,Casas-Raymond_2006,Casas-Mateos-Raymond_2007}), allows to prove error estimates for the difference between local optimal controls and their discrete approximation as well as between the associated state and adjoint state variables and their discrete approximations

Recent advances at the intersection of dense large graph limits and mean field games have begun to enable the scalable analysis of a broad class of dynamical sequential games with large numbers of agents. So far, results have been largely limited to graphon mean field systems with continuous-time diffusive or jump dynamics, typically without control and with little focus on computational methods. We propose a novel discrete-time formulation for graphon mean field games as the limit of non-linear dense graph Markov games with weak interaction. On the theoretical side, we give extensive and rigorous existence and approximation properties of the graphon mean field solution in sufficiently large systems. On the practical side, we provide general learning schemes for graphon mean field equilibria by either introducing agent equivalence classes or reformulating the graphon mean field system as a classical mean field system. By repeatedly finding a regularized optimal control solution and its generated mean field, we successfully obtain plausible approximate Nash equilibria in otherwise infeasible large dense graph games with many agents. Empirically, we are able to demonstrate on a number of examples that the finite-agent behavior comes increasingly close to the mean field behavior for our computed equilibria as the graph or system size grows, verifying our theory. More generally, we successfully apply policy gradient reinforcement learning in conjunction with sequential Monte Carlo methods.

In this paper we consider a class of unfitted finite element methods for scalar elliptic problems. These so-called CutFEM methods use standard finite element spaces on a fixed unfitted triangulation combined with the Nitsche technique and a ghost penalty stabilization. As a model problem we consider the application of such a method to the Poisson interface problem. We introduce and analyze a new class of preconditioners that is based on a subspace decomposition approach. The unfitted finite element space is split into two subspaces, where one subspace is the standard finite element space associated to the background mesh and the second subspace is spanned by all cut basis functions corresponding to nodes on the cut elements. We will show that this splitting is stable, uniformly in the discretization parameter and in the location of the interface in the triangulation. Based on this we introduce an efficient preconditioner that is uniformly spectrally equivalent to the stiffness matrix. Using a similar splitting, it is shown that the same preconditioning approach can also be applied to a fictitious domain CutFEM discretization of the Poisson equation. Results of numerical experiments are included that illustrate optimality of such preconditioners for the Poisson interface problem and the Poisson fictitious domain problem.

The main concern of the present paper is the study of the multi-scale dynamics of thermonuclear fusion plasmas via a multi-species Fokker-Planck kinetic model. One of the goals is the generalization of the standard Fokker-Planck collision operator to a multispecies one, conserving mass, total momentum and energy, as well as satisfying Boltzmann's H-theorem. Secondly, the paper investigates in more details the reduced model used for the electron description in present simulations, and which considers the electrons in a thermodynamic equilibrium (adiabatic regime), whereas the ions are kept kinetic. On the one hand, we perform some mathematical asymptotic limits to obtain in the electron/ion low mass ratio limit the above-mentioned electron adiabatic regime. On the other hand, we develop a numerical scheme , based on a Hermite spectral method, and perfom numerical simulations to illustrate and investigate in more details this asymptotics.

In experiments to estimate parameters of a parametric model, Bayesian experiment design allows measurement settings to be chosen based on utility, which is the predicted improvement of parameter distributions due to modeled measurement results. In this paper we compare information-theory-based utility with three alternative utility algorithms. Tests of these utility alternatives in simulated adaptive measurements demonstrate large improvements in computational speed with slight impacts on measurement efficiency.

We propose a new simulation-based estimation method, adversarial estimation, for structural models. The estimator is formulated as the solution to a minimax problem between a generator (which generates synthetic observations using the structural model) and a discriminator (which classifies if an observation is synthetic). The discriminator maximizes the accuracy of its classification while the generator minimizes it. We show that, with a sufficiently rich discriminator, the adversarial estimator attains parametric efficiency under correct specification and the parametric rate under misspecification. We advocate the use of a neural network as a discriminator that can exploit adaptivity properties and attain fast rates of convergence. We apply our method to the elderly's saving decision model and show that our estimator uncovers the bequest motive as an important source of saving across the wealth distribution, not only for the rich.

This paper is concerned with two improved variants of the Hutch++ algorithm for estimating the trace of a square matrix, implicitly given through matrix-vector products. Hutch++ combines randomized low-rank approximation in a first phase with stochastic trace estimation in a second phase. In turn, Hutch++ only requires $O\left(\varepsilon^{-1}\right)$ matrix-vector products to approximate the trace within a relative error $\varepsilon$ with high probability. This compares favorably with the $O\left(\varepsilon^{-2}\right)$ matrix-vector products needed when using stochastic trace estimation alone. In Hutch++, the number of matrix-vector products is fixed a priori and distributed in a prescribed fashion among the two phases. In this work, we derive an adaptive variant of Hutch++, which outputs an estimate of the trace that is within some prescribed error tolerance with a controllable failure probability, while splitting the matrix-vector products in a near-optimal way among the two phases. For the special case of symmetric positive semi-definite matrix, we present another variant of Hutch++, called Nystr\"om++, which utilizes the so called Nystr\"om approximation and requires only one pass over the matrix, as compared to two passes with Hutch++. We extend the analysis of Hutch++ to Nystr\"om++. Numerical experiments demonstrate the effectiveness of our two new algorithms.

Fractional differential equations (FDEs) describe subdiffusion behavior of dynamical systems. Its non-local structure requires taking into account the whole evolution history during the time integration, which then possibly causes additional memory use to store the history, growing in time. An alternative to a quadrature for the history integral is to approximate the fractional kernel with the sum of exponentials, which is equivalent to considering the FDE solution as a sum of solutions to a system of ODEs. One possibility to construct this system is to approximate the Laplace spectrum of the fractional kernel with a rational function. In this paper, we use the adaptive Antoulas--Anderson (AAA) algorithm for the rational approximation of the kernel spectrum which yields only a small number of real valued poles. We propose a numerical scheme based on this idea and study its stability and convergence properties. In addition, we apply the algorithm to a time-fractional Cahn-Hilliard problem.

Binary neural networks (BNNs) represent original full-precision weights and activations into 1-bit with sign function. Since the gradient of the conventional sign function is almost zero everywhere which cannot be used for back-propagation, several attempts have been proposed to alleviate the optimization difficulty by using approximate gradient. However, those approximations corrupt the main direction of factual gradient. To this end, we propose to estimate the gradient of sign function in the Fourier frequency domain using the combination of sine functions for training BNNs, namely frequency domain approximation (FDA). The proposed approach does not affect the low-frequency information of the original sign function which occupies most of the overall energy, and high-frequency coefficients will be ignored to avoid the huge computational overhead. In addition, we embed a noise adaptation module into the training phase to compensate the approximation error. The experiments on several benchmark datasets and neural architectures illustrate that the binary network learned using our method achieves the state-of-the-art accuracy. Code will be available at \textit{//gitee.com/mindspore/models/tree/master/research/cv/FDA-BNN}.

北京阿比特科技有限公司