Sequences of parametrized Lyapunov equations can be encountered in many application settings. Moreover, solutions of such equations are often intermediate steps of an overall procedure whose main goal is the computation of quantities of the form $f(X)$ where $X$ denotes the solution of a Lyapunov equation. We are interested in addressing problems where the parameter dependency of the coefficient matrix is encoded as a low-rank modification to a \emph{seed}, fixed matrix. We propose two novel numerical procedures that fully exploit such a common structure. The first one builds upon recycling Krylov techniques, and it is well-suited for small dimensional problems as it makes use of dense numerical linear algebra tools. The second algorithm can instead address large-scale problems by relying on state-of-the-art projection techniques based on the extended Krylov subspace. We test the new algorithms on several problems arising in the study of damped vibrational systems and the analyses of output synchronization problems for multi-agent systems. Our results show that the algorithms we propose are superior to state-of-the-art techniques as they are able to remarkably speed up the computation of accurate solutions.
An efficient approximate version of implicit Taylor methods for initial-value problems of systems of ordinary differential equations (ODEs) is introduced. The approach, based on an approximate formulation of Taylor methods, produces a method that requires less evaluations of the function that defines the ODE and its derivatives than the usual version. On the other hand, an efficient numerical solution of the equation that arises from the discretization by means of Newton's method is introduced for an implicit scheme of any order. Numerical experiments illustrate that the resulting algorithm is simpler to implement and has better performance than its exact counterpart.
We propose a model for the coupling of flow and transport equations with porous membrane-type conditions on part of the boundary. The governing equations consist of the incompressible Navier--Stokes equations coupled with an advection-diffusion equation, and we employ a Lagrange multiplier to enforce the coupling between penetration velocity and transport on the membrane, while mixed boundary conditions are considered in the remainder of the boundary. We show existence and uniqueness of the continuous problem using a fixed-point argument. Next, an H(div)-conforming finite element formulation is proposed, and we address its a priori error analysis. The method uses an upwind approach that provides stability in the convection-dominated regime. We showcase a set of numerical examples validating the theory and illustrating the use of the new methods in the simulation of reverse osmosis processes.
We develop a sparse spectral method for a class of fractional differential equations, posed on $\mathbb{R}$, in one dimension. These equations can include sqrt-Laplacian, Hilbert, derivative and identity terms. The numerical method utilizes a basis consisting of weighted Chebyshev polynomials of the second kind in conjunction with their Hilbert transforms. The former functions are supported on $[-1,1]$ whereas the latter have global support. The global approximation space can contain different affine transformations of the basis, mapping $[-1,1]$ to other intervals. Remarkably, not only are the induced linear systems sparse, but the operator decouples across the different affine transformations. Hence, the solve reduces to solving $K$ independent sparse linear systems of size $\mathcal{O}(n)\times \mathcal{O}(n)$, with $\mathcal{O}(n)$ nonzero entries, where $K$ is the number of different intervals and $n$ is the highest polynomial degree contained in the sum space. This results in an $\mathcal{O}(n)$ complexity solve. Applications to fractional heat and wave equations are considered.
Partial differential equations (PDEs) have become an essential tool for modeling complex physical systems. Such equations are typically solved numerically via mesh-based methods, such as finite element methods, with solutions over the spatial domain. However, obtaining these solutions are often prohibitively costly, limiting the feasibility of exploring parameters in PDEs. In this paper, we propose an efficient emulator that simultaneously predicts the solutions over the spatial domain, with theoretical justification of its uncertainty quantification. The novelty of the proposed method lies in the incorporation of the mesh node coordinates into the statistical model. In particular, the proposed method segments the mesh nodes into multiple clusters via a Dirichlet process prior and fits Gaussian process models with the same hyperparameters in each of them. Most importantly, by revealing the underlying clustering structures, the proposed method can provide valuable insights into qualitative features of the resulting dynamics that can be used to guide further investigations. Real examples are demonstrated to show that our proposed method has smaller prediction errors than its main competitors, with competitive computation time, and identifies interesting clusters of mesh nodes that possess physical significance, such as satisfying boundary conditions. An R package for the proposed methodology is provided in an open repository.
An adaptive method for parabolic partial differential equations that combines sparse wavelet expansions in time with adaptive low-rank approximations in the spatial variables is constructed and analyzed. The method is shown to converge and satisfy similar complexity bounds as existing adaptive low-rank methods for elliptic problems, establishing its suitability for parabolic problems on high-dimensional spatial domains. The construction also yields computable rigorous a posteriori error bounds for such problems. The results are illustrated by numerical experiments.
This paper is concerned with the approximation of solutions to a class of second order non linear abstract differential equations. The finite-dimensional approximate solutions of the given system are built with the aid of the projection operator. We investigate the connection between the approximate solution and exact solution, and the question of convergence. Moreover, we define the Faedo-Galerkin(F-G) approximations and prove the existence and convergence results. The results are obtained by using the theory of cosine functions, Banach fixed point theorem and fractional power of closed linear operators. At last, an example of abstract formulation is provided.
We propose a new numerical domain decomposition method for solving elliptic equations on compact Riemannian manifolds. One advantage of this method is its ability to bypass the need for global triangulations or grids on the manifolds. Additionally, it features a highly parallel iterative scheme. To verify its efficacy, we conduct numerical experiments on some $4$-dimensional manifolds without and with boundary.
We present a complete numerical analysis for a general discretization of a coupled flow-mechanics model in fractured porous media, considering single-phase flows and including frictionless contact at matrix-fracture interfaces, as well as nonlinear poromechanical coupling. Fractures are described as planar surfaces, yielding the so-called mixed- or hybrid-dimensional models. Small displacements and a linear elastic behavior are considered for the matrix. The model accounts for discontinuous fluid pressures at matrix-fracture interfaces in order to cover a wide range of normal fracture conductivities. The numerical analysis is carried out in the Gradient Discretization framework, encompassing a large family of conforming and nonconforming discretizations. The convergence result also yields, as a by-product, the existence of a weak solution to the continuous model. A numerical experiment in 2D is presented to support the obtained result, employing a Hybrid Finite Volume scheme for the flow and second-order finite elements ($\mathbb P_2$) for the mechanical displacement coupled with face-wise constant ($\mathbb P_0$) Lagrange multipliers on fractures, representing normal stresses, to discretize the contact conditions.
We introduce a predictor-corrector discretisation scheme for the numerical integration of a class of stochastic differential equations and prove that it converges with weak order 1.0. The key feature of the new scheme is that it builds up sequentially (and recursively) in the dimension of the state space of the solution, hence making it suitable for approximations of high-dimensional state space models. We show, using the stochastic Lorenz 96 system as a test model, that the proposed method can operate with larger time steps than the standard Euler-Maruyama scheme and, therefore, generate valid approximations with a smaller computational cost. We also introduce the theoretical analysis of the error incurred by the new predictor-corrector scheme when used as a building block for discrete-time Bayesian filters for continuous-time systems. Finally, we assess the performance of several ensemble Kalman filters that incorporate the proposed sequential predictor-corrector Euler scheme and the standard Euler-Maruyama method. The numerical experiments show that the filters employing the new sequential scheme can operate with larger time steps, smaller Monte Carlo ensembles and noisier systems.
Among semiparametric regression models, partially linear additive models provide a useful tool to include additive nonparametric components as well as a parametric component, when explaining the relationship between the response and a set of explanatory variables. This paper concerns such models under sparsity assumptions for the covariates included in the linear component. Sparse covariates are frequent in regression problems where the task of variable selection is usually of interest. As in other settings, outliers either in the residuals or in the covariates involved in the linear component have a harmful effect. To simultaneously achieve model selection for the parametric component of the model and resistance to outliers, we combine preliminary robust estimators of the additive component, robust linear $MM-$regression estimators with a penalty such as SCAD on the coefficients in the parametric part. Under mild assumptions, consistency results and rates of convergence for the proposed estimators are derived. A Monte Carlo study is carried out to compare, under different models and contamination schemes, the performance of the robust proposal with its classical counterpart. The obtained results show the advantage of using the robust approach. Through the analysis of a real data set, we also illustrate the benefits of the proposed procedure.