3D perception is a critical problem in autonomous driving. Recently, the Bird-Eye-View (BEV) approach has attracted extensive attention, due to low-cost deployment and desirable vision detection capacity. However, the existing models ignore a realistic scenario during the driving procedure, i.e., one or more view cameras may be failed, which largely deteriorates the performance. To tackle this problem, we propose a generic Masked BEV (M-BEV) perception framework, which can effectively improve robustness to this challenging scenario, by random masking and reconstructing camera views in the end-to-end training. More specifically, we develop a novel Masked View Reconstruction (MVR) module for M-BEV. It mimics various missing cases by randomly masking features of different camera views, then leverages the original features of these views as self-supervision, and reconstructs the masked ones with the distinct spatio-temporal context across views. Via such a plug-and-play MVR, our M-BEV is capable of learning the missing views from the resting ones, and thus well generalized for robust view recovery and accurate perception in the testing. We perform extensive experiments on the popular NuScenes benchmark, where our framework can significantly boost 3D perception performance of the state-of-the-art models on various missing view cases, e.g., for the absence of back view, our M-BEV promotes the PETRv2 model with 10.3% mAP gain.
In the rapidly evolving landscape of Large Language Models (LLMs), ensuring robust safety measures is paramount. To meet this crucial need, we propose \emph{SALAD-Bench}, a safety benchmark specifically designed for evaluating LLMs, attack, and defense methods. Distinguished by its breadth, SALAD-Bench transcends conventional benchmarks through its large scale, rich diversity, intricate taxonomy spanning three levels, and versatile functionalities.SALAD-Bench is crafted with a meticulous array of questions, from standard queries to complex ones enriched with attack, defense modifications and multiple-choice. To effectively manage the inherent complexity, we introduce an innovative evaluators: the LLM-based MD-Judge for QA pairs with a particular focus on attack-enhanced queries, ensuring a seamless, and reliable evaluation. Above components extend SALAD-Bench from standard LLM safety evaluation to both LLM attack and defense methods evaluation, ensuring the joint-purpose utility. Our extensive experiments shed light on the resilience of LLMs against emerging threats and the efficacy of contemporary defense tactics. Data and evaluator are released under \url{//github.com/OpenSafetyLab/SALAD-BENCH}. Warning: this paper includes examples that may be offensive or harmful.
The Convolutional Neural Network (CNN) has emerged as a powerful and versatile tool for artificial intelligence (AI) applications. Conventional computing architectures face challenges in meeting the demanding processing requirements of compute-intensive CNN applications, as they suffer from limited throughput and low utilization. To this end, specialized accelerators have been developed to speed up CNN computations. However, as we demonstrate in this paper via extensive design space exploration, different neural network models have different characteristics, which calls for different accelerator architectures and configurations to match their computing demand. We show that a one-size-fits-all fixed architecture does not guarantee optimal power/energy/performance trade-off. To overcome this challenge, this paper proposes ARMAN, a novel reconfigurable systolic-array-based accelerator architecture based on Monolithic 3D (M3D) technology for CNN inference. The proposed accelerator offers the flexibility to reconfigure among different scale-up or scale-out arrangements depending on the neural network structure, providing the optimal trade-off across power, energy, and performance for various neural network models. We demonstrate the effectiveness of our approach through evaluations of multiple benchmarks. The results demonstrate that the proposed accelerator exhibits up to 2x, 2.24x, 1.48x, and 2x improvements in terms of execution cycles, power, energy, and EDP respectively, over the non-configurable architecture.
Object location prior is critical for the standard 6D object pose estimation setting. The prior can be used to initialize the 3D object translation and facilitate 3D object rotation estimation. Unfortunately, the object detectors that are used for this purpose do not generalize to unseen objects. Therefore, existing 6D pose estimation methods for unseen objects either assume the ground-truth object location to be known or yield inaccurate results when it is unavailable. In this paper, we address this problem by developing a method, LocPoseNet, able to robustly learn location prior for unseen objects. Our method builds upon a template matching strategy, where we propose to distribute the reference kernels and convolve them with a query to efficiently compute multi-scale correlations. We then introduce a novel translation estimator, which decouples scale-aware and scale-robust features to predict different object location parameters. Our method outperforms existing works by a large margin on LINEMOD and GenMOP. We further construct a challenging synthetic dataset, which allows us to highlight the better robustness of our method to various noise sources. Our project website is at: //sailor-z.github.io/projects/3DV2024_LocPoseNet.html.
Recently, Profile-based Spoken Language Understanding (SLU) has gained increasing attention, which aims to incorporate various types of supplementary profile information (i.e., Knowledge Graph, User Profile, Context Awareness) to eliminate the prevalent ambiguities in user utterances. However, existing approaches can only separately model different profile information, without considering their interrelationships or excluding irrelevant and conflicting information within them. To address the above issues, we introduce a Heterogeneous Graph Attention Network to perform reasoning across multiple Profile information, called Pro-HAN. Specifically, we design three types of edges, denoted as intra-Pro, inter-Pro, and utterance-Pro, to capture interrelationships among multiple Pros. We establish a new state-of-the-art on the ProSLU dataset, with an improvement of approximately 8% across all three metrics. Further analysis experiments also confirm the effectiveness of our method in modeling multi-source profile information.
Table understanding capability of Large Language Models (LLMs) has been extensively studied through the task of question-answering (QA) over tables. Typically, only a small part of the whole table is relevant to derive the answer for a given question. The irrelevant parts act as noise and are distracting information, resulting in sub-optimal performance due to the vulnerability of LLMs to noise. To mitigate this, we propose CABINET (Content RelevAnce-Based NoIse ReductioN for TablE QuesTion-Answering) - a framework to enable LLMs to focus on relevant tabular data by suppressing extraneous information. CABINET comprises an Unsupervised Relevance Scorer (URS), trained differentially with the QA LLM, that weighs the table content based on its relevance to the input question before feeding it to the question-answering LLM (QA LLM). To further aid the relevance scorer, CABINET employs a weakly supervised module that generates a parsing statement describing the criteria of rows and columns relevant to the question and highlights the content of corresponding table cells. CABINET significantly outperforms various tabular LLM baselines, as well as GPT3-based in-context learning methods, is more robust to noise, maintains outperformance on tables of varying sizes, and establishes new SoTA performance on WikiTQ, FeTaQA, and WikiSQL datasets. We release our code and datasets at //github.com/Sohanpatnaik106/CABINET_QA.
Recently, there have been significant advancements in Image Restoration based on CNN and transformer. However, the inherent characteristics of the Image Restoration task are often overlooked in many works. These works often focus on the basic block design and stack numerous basic blocks to the model, leading to redundant parameters and unnecessary computations and hindering the efficiency of the image restoration. In this paper, we propose a Lightweight Image Restoration network called LIR to efficiently remove degradation (blur, rain, noise, haze, etc.). A key component in LIR is the Efficient Adaptive Attention (EAA) Block, which is mainly composed of Adaptive Filters and Attention Blocks. It is capable of adaptively sharpening contours, removing degradation, and capturing global information in various image restoration scenes in an efficient and computation-friendly manner. In addition, through a simple structural design, LIR addresses the degradations existing in the local and global residual connections that are ignored by modern networks. Extensive experiments demonstrate that our LIR achieves comparable performance to state-of-the-art networks on most benchmarks with fewer parameters and computations. It is worth noting that our LIR produces better visual results than state-of-the-art networks that are more in line with the human aesthetic.
Adapting the Diffusion Probabilistic Model (DPM) for direct image super-resolution is wasteful, given that a simple Convolutional Neural Network (CNN) can recover the main low-frequency content. Therefore, we present ResDiff, a novel Diffusion Probabilistic Model based on Residual structure for Single Image Super-Resolution (SISR). ResDiff utilizes a combination of a CNN, which restores primary low-frequency components, and a DPM, which predicts the residual between the ground-truth image and the CNN predicted image. In contrast to the common diffusion-based methods that directly use LR images to guide the noise towards HR space, ResDiff utilizes the CNN's initial prediction to direct the noise towards the residual space between HR space and CNN-predicted space, which not only accelerates the generation process but also acquires superior sample quality. Additionally, a frequency-domain-based loss function for CNN is introduced to facilitate its restoration, and a frequency-domain guided diffusion is designed for DPM on behalf of predicting high-frequency details. The extensive experiments on multiple benchmark datasets demonstrate that ResDiff outperforms previous diffusion based methods in terms of shorter model convergence time, superior generation quality, and more diverse samples.
Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.
Knowledge graphs are important resources for many artificial intelligence tasks but often suffer from incompleteness. In this work, we propose to use pre-trained language models for knowledge graph completion. We treat triples in knowledge graphs as textual sequences and propose a novel framework named Knowledge Graph Bidirectional Encoder Representations from Transformer (KG-BERT) to model these triples. Our method takes entity and relation descriptions of a triple as input and computes scoring function of the triple with the KG-BERT language model. Experimental results on multiple benchmark knowledge graphs show that our method can achieve state-of-the-art performance in triple classification, link prediction and relation prediction tasks.
ASR (automatic speech recognition) systems like Siri, Alexa, Google Voice or Cortana has become quite popular recently. One of the key techniques enabling the practical use of such systems in people's daily life is deep learning. Though deep learning in computer vision is known to be vulnerable to adversarial perturbations, little is known whether such perturbations are still valid on the practical speech recognition. In this paper, we not only demonstrate such attacks can happen in reality, but also show that the attacks can be systematically conducted. To minimize users' attention, we choose to embed the voice commands into a song, called CommandSong. In this way, the song carrying the command can spread through radio, TV or even any media player installed in the portable devices like smartphones, potentially impacting millions of users in long distance. In particular, we overcome two major challenges: minimizing the revision of a song in the process of embedding commands, and letting the CommandSong spread through the air without losing the voice "command". Our evaluation demonstrates that we can craft random songs to "carry" any commands and the modify is extremely difficult to be noticed. Specially, the physical attack that we play the CommandSongs over the air and record them can success with 94 percentage.