亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Federated learning (FL) has been proposed as a method to train a model on different units without exchanging data. This offers great opportunities in the healthcare sector, where large datasets are available but cannot be shared to ensure patient privacy. We systematically investigate the effectiveness of FL on the publicly available eICU dataset for predicting the survival of each ICU stay. We employ Federated Averaging as the main practical algorithm for FL and show how its performance changes by altering three key hyper-parameters, taking into account that clients can significantly vary in size. We find that in many settings, a large number of local training epochs improves the performance while at the same time reducing communication costs. Furthermore, we outline in which settings it is possible to have only a low number of hospitals participating in each federated update round. When many hospitals with low patient counts are involved, the effect of overfitting can be avoided by decreasing the batchsize. This study thus contributes toward identifying suitable settings for running distributed algorithms such as FL on clinical datasets.

相關內容

聯邦學習(Federated Learning)是一種新興的人工智能基礎技術,在 2016 年由谷歌最先提出,原本用于解決安卓手機終端用戶在本地更新模型的問題,其設計目標是在保障大數據交換時的信息安全、保護終端數據和個人數據隱私、保證合法合規的前提下,在多參與方或多計算結點之間開展高效率的機器學習。其中,聯邦學習可使用的機器學習算法不局限于神經網絡,還包括隨機森林等重要算法。聯邦學習有望成為下一代人工智能協同算法和協作網絡的基礎。

This paper presents a novel, fast and privacy preserving implementation of deep autoencoders. DAEF (Deep Autoencoder for Federated learning), unlike traditional neural networks, trains a deep autoencoder network in a non-iterative way, which drastically reduces its training time. Its training can be carried out in a distributed way (several partitions of the dataset in parallel) and incrementally (aggregation of partial models), and due to its mathematical formulation, the data that is exchanged does not endanger the privacy of the users. This makes DAEF a valid method for edge computing and federated learning scenarios. The method has been evaluated and compared to traditional (iterative) deep autoencoders using seven real anomaly detection datasets, and their performance have been shown to be similar despite DAEF's faster training.

Present-day federated learning (FL) systems deployed over edge networks consists of a large number of workers with high degrees of heterogeneity in data and/or computing capabilities, which call for flexible worker participation in terms of timing, effort, data heterogeneity, etc. To satisfy the need for flexible worker participation, we consider a new FL paradigm called "Anarchic Federated Learning" (AFL) in this paper. In stark contrast to conventional FL models, each worker in AFL has the freedom to choose i) when to participate in FL, and ii) the number of local steps to perform in each round based on its current situation (e.g., battery level, communication channels, privacy concerns). However, such chaotic worker behaviors in AFL impose many new open questions in algorithm design. In particular, it remains unclear whether one could develop convergent AFL training algorithms, and if yes, under what conditions and how fast the achievable convergence speed is. Toward this end, we propose two Anarchic Federated Averaging (AFA) algorithms with two-sided learning rates for both cross-device and cross-silo settings, which are named AFA-CD and AFA-CS, respectively. Somewhat surprisingly, we show that, under mild anarchic assumptions, both AFL algorithms achieve the best known convergence rate as the state-of-the-art algorithms for conventional FL. Moreover, they retain the highly desirable {\em linear speedup effect} with respect of both the number of workers and local steps in the new AFL paradigm. We validate the proposed algorithms with extensive experiments on real-world datasets.

Due to the curse of statistical heterogeneity across clients, adopting a personalized federated learning method has become an essential choice for the successful deployment of federated learning-based services. Among diverse branches of personalization techniques, a model mixture-based personalization method is preferred as each client has their own personalized model as a result of federated learning. It usually requires a local model and a federated model, but this approach is either limited to partial parameter exchange or requires additional local updates, each of which is helpless to novel clients and burdensome to the client's computational capacity. As the existence of a connected subspace containing diverse low-loss solutions between two or more independent deep networks has been discovered, we combined this interesting property with the model mixture-based personalized federated learning method for improved performance of personalization. We proposed SuPerFed, a personalized federated learning method that induces an explicit connection between the optima of the local and the federated model in weight space for boosting each other. Through extensive experiments on several benchmark datasets, we demonstrated that our method achieves consistent gains in both personalization performance and robustness to problematic scenarios possible in realistic services.

Distributed machine learning has been widely used in recent years to tackle the large and complex dataset problem. Therewith, the security of distributed learning has also drawn increasing attentions from both academia and industry. In this context, federated learning (FL) was developed as a "secure" distributed learning by maintaining private training data locally and only public model gradients are communicated between. However, to date, a variety of gradient leakage attacks have been proposed for this procedure and prove that it is insecure. For instance, a common drawback of these attacks is shared: they require too much auxiliary information such as model weights, optimizers, and some hyperparameters (e.g., learning rate), which are difficult to obtain in real situations. Moreover, many existing algorithms avoid transmitting model gradients in FL and turn to sending model weights, such as FedAvg, but few people consider its security breach. In this paper, we present two novel frameworks to demonstrate that transmitting model weights is also likely to leak private local data of clients, i.e., (DLM and DLM+), under the FL scenario. In addition, a number of experiments are performed to illustrate the effect and generality of our attack frameworks. At the end of this paper, we also introduce two defenses to the proposed attacks and evaluate their protection effects. Comprehensively, the proposed attack and defense schemes can be applied to the general distributed learning scenario as well, just with some appropriate customization.

Machine learning abilities have become a vital component for various solutions across industries, applications, and sectors. Many organizations seek to leverage AI-based solutions across their business services to unlock better efficiency and increase productivity. Problems, however, can arise if there is a lack of quality data for AI-model training, scalability, and maintenance. We propose a data-centric federated learning architecture leveraged by a public blockchain and smart contracts to overcome this significant issue. Our proposed solution provides a virtual public marketplace where developers, data scientists, and AI-engineer can publish their models and collaboratively create and access quality data for training. We enhance data quality and integrity through an incentive mechanism that rewards contributors for data contribution and verification. Those combined with the proposed framework helped increase with only one user simulation the training dataset with an average of 100 input daily and the model accuracy by approximately 4\%.

To investigate the heterogeneity of federated learning in real-world scenarios, we generalize the classical federated learning to federated hetero-task learning, which emphasizes the inconsistency across the participants in federated learning in terms of both data distribution and learning tasks. We also present B-FHTL, a federated hetero-task learning benchmark consisted of simulation dataset, FL protocols and a unified evaluation mechanism. B-FHTL dataset contains three well-designed federated learning tasks with increasing heterogeneity. Each task simulates the clients with different data distributions and learning tasks. To ensure fair comparison among different FL algorithms, B-FHTL builds in a full suite of FL protocols by providing high-level APIs to avoid privacy leakage, and presets most common evaluation metrics spanning across different learning tasks, such as regression, classification, text generation and etc. Furthermore, we compare the FL algorithms in fields of federated multi-task learning, federated personalization and federated meta learning within B-FHTL, and highlight the influence of heterogeneity and difficulties of federated hetero-task learning. Our benchmark, including the federated dataset, protocols, the evaluation mechanism and the preliminary experiment, is open-sourced at //github.com/alibaba/FederatedScope/tree/contest/v1.0.

Federated learning is a type of collaborative machine learning, where participating clients process their data locally, sharing only updates to the collaborative model. This enables to build privacy-aware distributed machine learning models, among others. The goal is the optimization of a statistical model's parameters by minimizing a cost function of a collection of datasets which are stored locally by a set of clients. This process exposes the clients to two issues: leakage of private information and lack of personalization of the model. On the other hand, with the recent advancements in techniques to analyze data, there is a surge of concern for the privacy violation of the participating clients. To mitigate this, differential privacy and its variants serve as a standard for providing formal privacy guarantees. Often the clients represent very heterogeneous communities and hold data which are very diverse. Therefore, aligned with the recent focus of the FL community to build a framework of personalized models for the users representing their diversity, it is also of utmost importance to protect against potential threats against the sensitive and personal information of the clients. $d$-privacy, which is a generalization of geo-indistinguishability, the lately popularized paradigm of location privacy, uses a metric-based obfuscation technique that preserves the spatial distribution of the original data. To address the issue of protecting the privacy of the clients and allowing for personalized model training to enhance the fairness and utility of the system, we propose a method to provide group privacy guarantees exploiting some key properties of $d$-privacy which enables personalized models under the framework of FL. We provide with theoretical justifications to the applicability and experimental validation on real-world datasets to illustrate the working of the proposed method.

Knowledge sharing and model personalization are essential components to tackle the non-IID challenge in federated learning (FL). Most existing FL methods focus on two extremes: 1) to learn a shared model to serve all clients with non-IID data, and 2) to learn personalized models for each client, namely personalized FL. There is a trade-off solution, namely clustered FL or cluster-wise personalized FL, which aims to cluster similar clients into one cluster, and then learn a shared model for all clients within a cluster. This paper is to revisit the research of clustered FL by formulating them into a bi-level optimization framework that could unify existing methods. We propose a new theoretical analysis framework to prove the convergence by considering the clusterability among clients. In addition, we embody this framework in an algorithm, named Weighted Clustered Federated Learning (WeCFL). Empirical analysis verifies the theoretical results and demonstrates the effectiveness of the proposed WeCFL under the proposed cluster-wise non-IID settings.

Recent advances in Federated Learning (FL) have brought large-scale collaborative machine learning opportunities for massively distributed clients with performance and data privacy guarantees. However, most current works focus on the interest of the central controller in FL,and overlook the interests of the FL clients. This may result in unfair treatment of clients which discourages them from actively participating in the learning process and damages the sustainability of the FL ecosystem. Therefore, the topic of ensuring fairness in FL is attracting a great deal of research interest. In recent years, diverse Fairness-Aware FL (FAFL) approaches have been proposed in an effort to achieve fairness in FL from different perspectives. However, there is no comprehensive survey which helps readers gain insight into this interdisciplinary field. This paper aims to provide such a survey. By examining the fundamental and simplifying assumptions, as well as the notions of fairness adopted by existing literature in this field, we propose a taxonomy of FAFL approaches covering major steps in FL, including client selection, optimization, contribution evaluation and incentive distribution. In addition, we discuss the main metrics for experimentally evaluating the performance of FAFL approaches, and suggest promising future research directions towards fairness-aware federated learning.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

北京阿比特科技有限公司