This paper proposes a topology optimization method for non-thermal and thermal fluid problems using the Lattice Kinetic Scheme (LKS).LKS, which is derived from the Lattice Boltzmann Method (LBM), requires only macroscopic values, such as fluid velocity and pressure, whereas LBM requires velocity distribution functions, thereby reducing memory requirements. The proposed method computes design sensitivities based on the adjoint variable method, and the adjoint equation is solved in the same manner as LKS; thus, we refer to it as the Adjoint Lattice Kinetic Scheme (ALKS). A key contribution of this method is the proposed approximate treatment of boundary conditions for the adjoint equation, which is challenging to apply directly due to the characteristics of LKS boundary conditions. We demonstrate numerical examples for steady and unsteady problems involving non-thermal and thermal fluids, and the results are physically meaningful and consistent with previous research, exhibiting similar trends in parameter dependencies, such as the Reynolds number. Furthermore, the proposed method reduces memory usage by up to 75% compared to the conventional LBM in an unsteady thermal fluid problem.
Conic optimization plays a crucial role in many machine learning (ML) problems. However, practical algorithms for conic constrained ML problems with large datasets are often limited to specific use cases, as stochastic algorithms for general conic optimization remain underdeveloped. To fill this gap, we introduce a stochastic interior-point method (SIPM) framework for general conic optimization, along with four novel SIPM variants leveraging distinct stochastic gradient estimators. Under mild assumptions, we establish the global convergence rates of our proposed SIPMs, which, up to a logarithmic factor, match the best-known rates in stochastic unconstrained optimization. Finally, our numerical experiments on robust linear regression, multi-task relationship learning, and clustering data streams demonstrate the effectiveness and efficiency of our approach.
This manuscript studies the numerical solution of the time-fractional Burgers-Huxley equation in a reproducing kernel Hilbert space. The analytical solution of the equation is obtained in terms of a convergent series with easily computable components. It is observed that the approximate solution uniformly converges to the exact solution for the aforementioned equation. Also, the convergence of the proposed method is investigated. Numerical examples are given to demonstrate the validity and applicability of the presented method. The numerical results indicate that the proposed method is powerful and effective with a small computational overhead.
This paper presents an analysis of properties of two hybrid discretization methods for Gaussian derivatives, based on convolutions with either the normalized sampled Gaussian kernel or the integrated Gaussian kernel followed by central differences. The motivation for studying these discretization methods is that in situations when multiple spatial derivatives of different order are needed at the same scale level, they can be computed significantly more efficiently compared to more direct derivative approximations based on explicit convolutions with either sampled Gaussian kernels or integrated Gaussian kernels. While these computational benefits do also hold for the genuinely discrete approach for computing discrete analogues of Gaussian derivatives, based on convolution with the discrete analogue of the Gaussian kernel followed by central differences, the underlying mathematical primitives for the discrete analogue of the Gaussian kernel, in terms of modified Bessel functions of integer order, may not be available in certain frameworks for image processing, such as when performing deep learning based on scale-parameterized filters in terms of Gaussian derivatives, with learning of the scale levels. In this paper, we present a characterization of the properties of these hybrid discretization methods, in terms of quantitative performance measures concerning the amount of spatial smoothing that they imply, as well as the relative consistency of scale estimates obtained from scale-invariant feature detectors with automatic scale selection, with an emphasis on the behaviour for very small values of the scale parameter, which may differ significantly from corresponding results obtained from the fully continuous scale-space theory, as well as between different types of discretization methods.
This paper presents a fast and robust numerical method for reconstructing point-like sources in the time-harmonic Maxwell's equations given Cauchy data at a fixed frequency. This is an electromagnetic inverse source problem with broad applications, such as antenna synthesis and design, medical imaging, and pollution source tracing. We introduce new imaging functions and a computational algorithm to determine the number of point sources, their locations, and associated moment vectors, even when these vectors have notably different magnitudes. The number of sources and locations are estimated using significant peaks of the imaging functions, and the moment vectors are computed via explicitly simple formulas. The theoretical analysis and stability of the imaging functions are investigated, where the main challenge lies in analyzing the behavior of the dot products between the columns of the imaginary part of the Green's tensor and the unknown moment vectors. Additionally, we extend our method to reconstruct small-volume sources using an asymptotic expansion of their radiated electric field. We provide numerical examples in three dimensions to demonstrate the performance of our method.
This paper investigates the performance of a subclass of exponential integrators, specifically explicit exponential Runge--Kutta methods. It is well known that third-order methods can suffer from order reduction when applied to linearized problems involving unbounded and non-commuting operators. In this work, we consider a fourth-stage third-order Runge--Kutta method, which successfully achieves the expected order of accuracy and avoids order reduction, as long as all required order conditions are satisfied. The convergence analysis is carried out under the assumption of higher regularity for the initial data. Numerical experiments are provided to validate the theoretical results.
In this paper, we proposed a monotone block coordinate descent method for solving absolute value equation (AVE). Under appropriate conditions, we analyzed the global convergence of the algorithm and conduct numerical experiments to demonstrate its feasibility and effectiveness.
This paper addresses the inverse scattering problem for Maxwell's equations. We first show that a bianisotropic scatterer can be uniquely determined from multi-static far-field data through the factorization analysis of the far-field operator. Next, we investigate a modified version of the orthogonality sampling method, as proposed in \cite{Le2022}, for the numerical reconstruction of the scatterer. Finally, we apply this sampling method to invert unprocessed 3D experimental data obtained from the Fresnel Institute \cite{Geffrin2009}. Numerical examples with synthetic scattering data for bianisotropic targets are also presented to demonstrate the effectiveness of the method.
This paper explores the nonparametric estimation of the volatility component in a heteroscedastic scalar-on-function regression model, where the underlying discrete-time process is ergodic and subject to a missing-at-random mechanism. We first propose a simplified estimator for the regression and volatility operators, constructed solely from the observed data. The asymptotic properties of these estimators, including the almost sure uniform consistency rate and asymptotic distribution, are rigorously analyzed. Subsequently, the simplified estimators are employed to impute the missing data in the original process, enhancing the estimation of the regression and volatility components. The asymptotic behavior of these imputed estimators is also thoroughly investigated. A numerical comparison of the simplified and imputed estimators is presented using simulated data. Finally, the methodology is applied to real-world data to model the volatility of daily natural gas returns, utilizing intraday EU/USD exchange rate return curves sampled at a 1-hour frequency.
A new variant of the GMRES method is presented for solving linear systems with the same matrix and subsequently obtained multiple right-hand sides. The new method keeps such properties of the classical GMRES algorithm as follows. Both bases of the search space and its image are maintained orthonormal that increases the robustness of the method. Moreover there is no need to store both bases since they are effectively represented within a common basis. Along with it our method is theoretically equivalent to the GCR method extended for a case of multiple right-hand sides but is more numerically robust and requires less memory. The main result of the paper is a mechanism of adding an arbitrary direction vector to the search space that can be easily adopted for flexible GMRES or GMRES with deflated restarting.
In this paper, we focus on efficiently and flexibly simulating the Fokker-Planck equation associated with the Nonlinear Noisy Leaky Integrate-and-Fire (NNLIF) model, which reflects the dynamic behavior of neuron networks. We apply the Galerkin spectral method to discretize the spatial domain by constructing a variational formulation that satisfies complex boundary conditions. Moreover, the boundary conditions in the variational formulation include only zeroth-order terms, with first-order conditions being naturally incorporated. This allows the numerical scheme to be further extended to an excitatory-inhibitory population model with synaptic delays and refractory states. Additionally, we establish the consistency of the numerical scheme. Experimental results, including accuracy tests, blow-up events, and periodic oscillations, validate the properties of our proposed method.