Modern remote sensing image change detection has witnessed substantial advancements by harnessing the potent feature extraction capabilities of CNNs and Transforms.Yet,prevailing change detection techniques consistently prioritize extracting semantic features related to significant alterations,overlooking the viability of directly interacting with bitemporal image features.In this letter,we propose a bitemporal image graph Interaction network for remote sensing change detection,namely BGINet-CD. More specifically,by leveraging the concept of non-local operations and mapping the features obtained from the backbone network to the graph structure space,we propose a unified self-focus mechanism for bitemporal images.This approach enhances the information coupling between the two temporal images while effectively suppressing task-irrelevant interference,Based on a streamlined backbone architecture,namely ResNet18,our model demonstrates superior performance compared to other state-of-the-art methods (SOTA) on the GZ CD dataset. Moreover,the model exhibits an enhanced trade-off between accuracy and computational efficiency,further improving its overall effectiveness
Instruments can be used to identify causal effects in the presence of unobserved confounding, under the famous relevance and exogeneity (unconfoundedness and exclusion) assumptions. As exogeneity is difficult to justify and to some degree untestable, it often invites criticism in applications. Hoping to alleviate this problem, we propose a novel identification approach, which relaxes traditional IV exogeneity to exogeneity conditional on some unobserved common confounders. We assume there exist some relevant proxies for the unobserved common confounders. Unlike typical proxies, our proxies can have a direct effect on the endogenous regressor and the outcome. We provide point identification results with a linearly separable outcome model in the disturbance, and alternatively with strict monotonicity in the first stage. General doubly robust and Neyman orthogonal moments are derived consecutively to enable the straightforward root-n estimation of low-dimensional parameters despite the high-dimensionality of nuisances, themselves non-uniquely defined by Fredholm integral equations. Using this novel method with NLS97 data, we separate ability bias from general selection bias in the economic returns to education problem.
The emergence of deep-learning-based methods to solve image-reconstruction problems has enabled a significant increase in reconstruction quality. Unfortunately, these new methods often lack reliability and explainability, and there is a growing interest to address these shortcomings while retaining the boost in performance. In this work, we tackle this issue by revisiting regularizers that are the sum of convex-ridge functions. The gradient of such regularizers is parameterized by a neural network that has a single hidden layer with increasing and learnable activation functions. This neural network is trained within a few minutes as a multistep Gaussian denoiser. The numerical experiments for denoising, CT, and MRI reconstruction show improvements over methods that offer similar reliability guarantees.
Many data extraction tasks of practical relevance require not only syntactic pattern matching but also semantic reasoning about the content of the underlying text. While regular expressions are very well suited for tasks that require only syntactic pattern matching, they fall short for data extraction tasks that involve both a syntactic and semantic component. To address this issue, we introduce semantic regexes, a generalization of regular expressions that facilitates combined syntactic and semantic reasoning about textual data. We also propose a novel learning algorithm that can synthesize semantic regexes from a small number of positive and negative examples. Our proposed learning algorithm uses a combination of neural sketch generation and compositional type-directed synthesis for fast and effective generalization from a small number of examples. We have implemented these ideas in a new tool called Smore and evaluated it on representative data extraction tasks involving several textual datasets. Our evaluation shows that semantic regexes can better support complex data extraction tasks than standard regular expressions and that our learning algorithm significantly outperforms existing tools, including state-of-the-art neural networks and program synthesis tools.
The mainstream of data-driven abstractive summarization models tends to explore the correlations rather than the causal relationships. Among such correlations, there can be spurious ones which suffer from the language prior learned from the training corpus and therefore undermine the overall effectiveness of the learned model. To tackle this issue, we introduce a Structural Causal Model (SCM) to induce the underlying causal structure of the summarization data. We assume several latent causal factors and non-causal factors, representing the content and style of the document and summary. Theoretically, we prove that the latent factors in our SCM can be identified by fitting the observed training data under certain conditions. On the basis of this, we propose a Causality Inspired Sequence-to-Sequence model (CI-Seq2Seq) to learn the causal representations that can mimic the causal factors, guiding us to pursue causal information for summary generation. The key idea is to reformulate the Variational Auto-encoder (VAE) to fit the joint distribution of the document and summary variables from the training corpus. Experimental results on two widely used text summarization datasets demonstrate the advantages of our approach.
Underwater object detection suffers from low detection performance because the distance and wavelength dependent imaging process yield evident image quality degradations such as haze-like effects, low visibility, and color distortions. Therefore, we commit to resolving the issue of underwater object detection with compounded environmental degradations. Typical approaches attempt to develop sophisticated deep architecture to generate high-quality images or features. However, these methods are only work for limited ranges because imaging factors are either unstable, too sensitive, or compounded. Unlike these approaches catering for high-quality images or features, this paper seeks transferable prior knowledge from detector-friendly images. The prior guides detectors removing degradations that interfere with detection. It is based on statistical observations that, the heavily degraded regions of detector-friendly (DFUI) and underwater images have evident feature distribution gaps while the lightly degraded regions of them overlap each other. Therefore, we propose a residual feature transference module (RFTM) to learn a mapping between deep representations of the heavily degraded patches of DFUI- and underwater- images, and make the mapping as a heavily degraded prior (HDP) for underwater detection. Since the statistical properties are independent to image content, HDP can be learned without the supervision of semantic labels and plugged into popular CNNbased feature extraction networks to improve their performance on underwater object detection. Without bells and whistles, evaluations on URPC2020 and UODD show that our methods outperform CNN-based detectors by a large margin. Our method with higher speeds and less parameters still performs better than transformer-based detectors. Our code and DFUI dataset can be found in //github.com/xiaoDetection/Learning-Heavily-Degraed-Prior.
Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.
The low resolution of objects of interest in aerial images makes pedestrian detection and action detection extremely challenging tasks. Furthermore, using deep convolutional neural networks to process large images can be demanding in terms of computational requirements. In order to alleviate these challenges, we propose a two-step, yes and no question answering framework to find specific individuals doing one or multiple specific actions in aerial images. First, a deep object detector, Single Shot Multibox Detector (SSD), is used to generate object proposals from small aerial images. Second, another deep network, is used to learn a latent common sub-space which associates the high resolution aerial imagery and the pedestrian action labels that are provided by the human-based sources
Object detection is considered as one of the most challenging problems in computer vision, since it requires correct prediction of both classes and locations of objects in images. In this study, we define a more difficult scenario, namely zero-shot object detection (ZSD) where no visual training data is available for some of the target object classes. We present a novel approach to tackle this ZSD problem, where a convex combination of embeddings are used in conjunction with a detection framework. For evaluation of ZSD methods, we propose a simple dataset constructed from Fashion-MNIST images and also a custom zero-shot split for the Pascal VOC detection challenge. The experimental results suggest that our method yields promising results for ZSD.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.
Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.