亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The monotonicity of discrete Laplacian, i.e., inverse positivity of stiffness matrix, implies discrete maximum principle, which is in general not true for high order accurate schemes on unstructured meshes. On the other hand, it is possible to construct high order accurate monotone schemes on structured meshes. All previously known high order accurate inverse positive schemes are fourth order accurate schemes, which is either an M-matrix or a product of two M-matrices. For the $Q^3$ spectral element method for the two-dimensional Laplacian, we prove its stiffness matrix is a product of four M-matrices thus it is monotone. Such a scheme can be regarded as a fifth order accurate finite difference scheme.

相關內容

This paper studies the $p$-biharmonic equation on graphs, which arises in point cloud processing and can be interpreted as a natural extension of the graph $p$-Laplacian from the perspective of hypergraph. The asymptotic behavior of the solution is investigated when the random geometric graph is considered and the number of data points goes to infinity. We show that the continuum limit is an appropriately weighted $p$-biharmonic equation with homogeneous Neumann boundary conditions. The result relies on the uniform $L^p$ estimates for solutions and gradients of nonlocal and graph Poisson equations. The $L^\infty$ estimates of solutions are also obtained as a byproduct.

We suggest new closely related methods for numerical inversion of $Z$-transform and Wiener-Hopf factorization of functions on the unit circle, based on sinh-deformations of the contours of integration, corresponding changes of variables and the simplified trapezoid rule. As applications, we consider evaluation of high moments of probability distributions and construction of causal filters. Programs in Matlab running on a Mac with moderate characteristics achieves the precision E-14 in several dozen of microseconds and E-11 in several milliseconds, respectively.

The uniform interpolation property in a given logic can be understood as the definability of propositional quantifiers. We mechanise the computation of these quantifiers and prove correctness in the Coq proof assistant for three modal logics, namely: (1) the modal logic K, for which a pen-and-paper proof exists; (2) G\"odel-L\"ob logic GL, for which our formalisation clarifies an important point in an existing, but incomplete, sequent-style proof; and (3) intuitionistic strong L\"ob logic iSL, for which this is the first proof-theoretic construction of uniform interpolants. Our work also yields verified programs that allow one to compute the propositional quantifiers on any formula in this logic.

This contribution introduces the idea of refinement patterns for the generation of optimal meshes in the context of the Finite Element Method. The main idea is to generate a library of possible patterns on which elements can be refined and use this library to inform an h adaptive code on how to handle complex refinements in regions of interest. There are no restrictions on the type of elements that can be refined, and the patterns can be generated for any element type. The main advantage of this approach is that it allows for the generation of optimal meshes in a systematic way where, even if a certain pattern is not available, it can easily be included through a simple text file with nodes and sub-elements. The contribution presents a detailed methodology for incorporating refinement patterns into h adaptive Finite Element Method codes and demonstrates the effectiveness of the approach through mesh refinement of problems with complex geometries.

We study the fully explicit numerical approximation of a semilinear elliptic boundary value model problem, which features a monomial reaction and analytic forcing, in a bounded polygon $\Omega\subset\mathbb{R}^2$ with a finite number of straight edges. In particular, we analyze the convergence of $hp$-type iterative linearized Galerkin ($hp$-ILG) solvers. Our convergence analysis is carried out for conforming $hp$-finite element (FE) Galerkin discretizations on sequences of regular, simplicial partitions of $\Omega$, with geometric corner refinement, with polynomial degrees increasing in sync with the geometric mesh refinement towards the corners of $\Omega$. For a sequence of discrete solutions generated by the ILG solver, with a stopping criterion that is consistent with the exponential convergence of the exact $hp$-FE Galerkin solution, we prove exponential convergence in $\mathrm{H}^1(\Omega)$ to the unique weak solution of the boundary value problem. Numerical experiments illustrate the exponential convergence of the numerical approximations obtained from the proposed scheme in terms of the number of degrees of freedom as well as of the computational complexity involved.

Domain decomposition provides an effective way to tackle the dilemma of physics-informed neural networks (PINN) which struggle to accurately and efficiently solve partial differential equations (PDEs) in the whole domain, but the lack of efficient tools for dealing with the interfaces between two adjacent sub-domains heavily hinders the training effects, even leads to the discontinuity of the learned solutions. In this paper, we propose a symmetry group based domain decomposition strategy to enhance the PINN for solving the forward and inverse problems of the PDEs possessing a Lie symmetry group. Specifically, for the forward problem, we first deploy the symmetry group to generate the dividing-lines having known solution information which can be adjusted flexibly and are used to divide the whole training domain into a finite number of non-overlapping sub-domains, then utilize the PINN and the symmetry-enhanced PINN methods to learn the solutions in each sub-domain and finally stitch them to the overall solution of PDEs. For the inverse problem, we first utilize the symmetry group acting on the data of the initial and boundary conditions to generate labeled data in the interior domain of PDEs and then find the undetermined parameters as well as the solution by only training the neural networks in a sub-domain. Consequently, the proposed method can predict high-accuracy solutions of PDEs which are failed by the vanilla PINN in the whole domain and the extended physics-informed neural network in the same sub-domains. Numerical results of the Korteweg-de Vries equation with a translation symmetry and the nonlinear viscous fluid equation with a scaling symmetry show that the accuracies of the learned solutions are improved largely.

We analyze a bilinear optimal control problem for the Stokes--Brinkman equations: the control variable enters the state equations as a coefficient. In two- and three-dimensional Lipschitz domains, we perform a complete continuous analysis that includes the existence of solutions and first- and second-order optimality conditions. We also develop two finite element methods that differ fundamentally in whether the admissible control set is discretized or not. For each of the proposed methods, we perform a convergence analysis and derive a priori error estimates; the latter under the assumption that the domain is convex. Finally, assuming that the domain is Lipschitz, we develop an a posteriori error estimator for each discretization scheme and obtain a global reliability bound.

We introduce a nonconforming hybrid finite element method for the two-dimensional vector Laplacian, based on a primal variational principle for which conforming methods are known to be inconsistent. Consistency is ensured using penalty terms similar to those used to stabilize hybridizable discontinuous Galerkin (HDG) methods, with a carefully chosen penalty parameter due to Brenner, Li, and Sung [Math. Comp., 76 (2007), pp. 573-595]. Our method accommodates elements of arbitrarily high order and, like HDG methods, it may be implemented efficiently using static condensation. The lowest-order case recovers the $P_1$-nonconforming method of Brenner, Cui, Li, and Sung [Numer. Math., 109 (2008), pp. 509-533], and we show that higher-order convergence is achieved under appropriate regularity assumptions. The analysis makes novel use of a family of weighted Sobolev spaces, due to Kondrat'ev, for domains admitting corner singularities.

We present polylogarithmic approximation algorithms for variants of the Shortest Path, Group Steiner Tree, and Group ATSP problems with vector costs. In these problems, each edge e has a non-negative vector cost $c_e \in \mathbb{R}^{\ell}_{\ge 0}$. For a feasible solution - a path, subtree, or tour (respectively) - we find the total vector cost of all the edges in the solution and then compute the $\ell_p$-norm of the obtained cost vector (we assume that $p \ge 1$ is an integer). Our algorithms for series-parallel graphs run in polynomial time and those for arbitrary graphs run in quasi-polynomial time. To obtain our results, we introduce and use new flow-based Sum-of-Squares relaxations. We also obtain a number of hardness results.

The practical Domain Adaptation (DA) tasks, e.g., Partial DA (PDA), open-set DA, universal DA, and test-time adaptation, have gained increasing attention in the machine learning community. In this paper, we propose a novel approach, dubbed Adversarial Reweighting with $\alpha$-Power Maximization (ARPM), for PDA where the source domain contains private classes absent in target domain. In ARPM, we propose a novel adversarial reweighting model that adversarially learns to reweight source domain data to identify source-private class samples by assigning smaller weights to them, for mitigating potential negative transfer. Based on the adversarial reweighting, we train the transferable recognition model on the reweighted source distribution to be able to classify common class data. To reduce the prediction uncertainty of the recognition model on the target domain for PDA, we present an $\alpha$-power maximization mechanism in ARPM, which enriches the family of losses for reducing the prediction uncertainty for PDA. Extensive experimental results on five PDA benchmarks, i.e., Office-31, Office-Home, VisDA-2017, ImageNet-Caltech, and DomainNet, show that our method is superior to recent PDA methods. Ablation studies also confirm the effectiveness of components in our approach. To theoretically analyze our method, we deduce an upper bound of target domain expected error for PDA, which is approximately minimized in our approach. We further extend ARPM to open-set DA, universal DA, and test time adaptation, and verify the usefulness through experiments.

北京阿比特科技有限公司