AI tools, particularly large-scale language model (LLM) based applications such as ChatGPT, have the potential to simplify qualitative research. Through semi-structured interviews with seventeen participants, we identified challenges and concerns in integrating ChatGPT into the qualitative analysis process. Collaborating with thirteen qualitative researchers, we developed a framework for designing prompts to enhance the effectiveness of ChatGPT in thematic analysis. Our findings indicate that improving transparency, providing guidance on prompts, and strengthening users' understanding of LLMs' capabilities significantly enhance the users' ability to interact with ChatGPT. We also discovered and revealed the reasons behind researchers' shift in attitude towards ChatGPT from negative to positive. This research not only highlights the importance of well-designed prompts in LLM applications but also offers reflections for qualitative researchers on the perception of AI's role. Finally, we emphasize the potential ethical risks and the impact of constructing AI ethical expectations by researchers, particularly those who are novices, on future research and AI development.
The adoption of large language models (LLMs) to assist clinicians has attracted remarkable attention. Existing works mainly adopt the close-ended question-answering (QA) task with answer options for evaluation. However, many clinical decisions involve answering open-ended questions without pre-set options. To better understand LLMs in the clinic, we construct a benchmark ClinicBench. We first collect eleven existing datasets covering diverse clinical language generation, understanding, and reasoning tasks. Furthermore, we construct six novel datasets and complex clinical tasks that are close to real-world practice, i.e., referral QA, treatment recommendation, hospitalization (long document) summarization, patient education, pharmacology QA and drug interaction for emerging drugs. We conduct an extensive evaluation of twenty-two LLMs under both zero-shot and few-shot settings. Finally, we invite medical experts to evaluate the clinical usefulness of LLMs.
Large language models (LLMs) are susceptible to a type of attack known as jailbreaking, which misleads LLMs to output harmful contents. Although there are diverse jailbreak attack strategies, there is no unified understanding on why some methods succeed and others fail. This paper explores the behavior of harmful and harmless prompts in the LLM's representation space to investigate the intrinsic properties of successful jailbreak attacks. We hypothesize that successful attacks share some similar properties: They are effective in moving the representation of the harmful prompt towards the direction to the harmless prompts. We leverage hidden representations into the objective of existing jailbreak attacks to move the attacks along the acceptance direction, and conduct experiments to validate the above hypothesis using the proposed objective. We hope this study provides new insights into understanding how LLMs understand harmfulness information.
Modern language models, while sophisticated, exhibit some inherent shortcomings, particularly in conversational settings. We claim that many of the observed shortcomings can be attributed to violation of one or more conversational principles. By drawing upon extensive research from both the social science and AI communities, we propose a set of maxims -- quantity, quality, relevance, manner, benevolence, and transparency -- for describing effective human-AI conversation. We first justify the applicability of the first four maxims (from Grice) in the context of human-AI interactions. We then argue that two new maxims, benevolence (concerning the generation of, and engagement with, harmful content) and transparency (concerning recognition of one's knowledge boundaries, operational constraints, and intents), are necessary for addressing behavior unique to modern human-AI interactions. We evaluate the degree to which various language models are able to understand these maxims and find that models possess an internal prioritization of principles that can significantly impact their ability to interpret the maxims accurately.
Recently, large language models (LLMs) enhanced by self-reflection have achieved promising performance on machine translation. The key idea is guiding LLMs to generate translation with human-like feedback. However, existing self-reflection methods lack effective feedback information, limiting the translation performance. To address this, we introduce a DUAL-REFLECT framework, leveraging the dual learning of translation tasks to provide effective feedback, thereby enhancing the models' self-reflective abilities and improving translation performance. The application of this method across various translation tasks has proven its effectiveness in improving translation accuracy and eliminating ambiguities, especially in translation tasks with low-resource language pairs.
Large language models (LLMs) have emerged as powerful tools for tackling complex tasks across diverse domains, but they also raise privacy concerns when fine-tuned on sensitive data due to potential memorization. While differential privacy (DP) offers a promising solution by ensuring models are `almost indistinguishable' with or without any particular privacy unit, current evaluations on LLMs mostly treat each example (text record) as the privacy unit. This leads to uneven user privacy guarantees when contributions per user vary. We therefore study user-level DP motivated by applications where it necessary to ensure uniform privacy protection across users. We present a systematic evaluation of user-level DP for LLM fine-tuning on natural language generation tasks. Focusing on two mechanisms for achieving user-level DP guarantees, Group Privacy and User-wise DP-SGD, we investigate design choices like data selection strategies and parameter tuning for the best privacy-utility tradeoff.
Although language models (LMs) demonstrate exceptional capabilities on various tasks, they are potentially vulnerable to extraction attacks, which represent a significant privacy risk. To mitigate the privacy concerns of LMs, machine unlearning has emerged as an important research area, which is utilized to induce the LM to selectively forget about some of its training data. While completely retraining the model will guarantee successful unlearning and privacy assurance, it is impractical for LMs, as it would be time-consuming and resource-intensive. Prior works efficiently unlearn the target token sequences, but upon subsequent iterations, the LM displays significant degradation in performance. In this work, we propose Privacy Protection via Optimal Parameters (POP), a novel unlearning method that effectively forgets the target token sequences from the pretrained LM by applying optimal gradient updates to the parameters. Inspired by the gradient derivation of complete retraining, we approximate the optimal training objective that successfully unlearns the target sequence while retaining the knowledge from the rest of the training data. Experimental results demonstrate that POP exhibits remarkable retention performance post-unlearning across 9 classification and 4 dialogue benchmarks, outperforming the state-of-the-art by a large margin. Furthermore, we introduce Remnant Memorization Accuracy that quantifies privacy risks based on token likelihood and validate its effectiveness through both qualitative and quantitative analyses.
Large language models (LLMs) can solve complex multi-step problems, but little is known about how these computations are implemented internally. Motivated by this, we study how LLMs answer multi-hop queries such as "The spouse of the performer of Imagine is". These queries require two information extraction steps: a latent one for resolving the first hop ("the performer of Imagine") into the bridge entity (John Lennon), and one for resolving the second hop ("the spouse of John Lennon") into the target entity (Yoko Ono). Understanding how the latent step is computed internally is key to understanding the overall computation. By carefully analyzing the internal computations of transformer-based LLMs, we discover that the bridge entity is resolved in the early layers of the model. Then, only after this resolution, the two-hop query is solved in the later layers. Because the second hop commences in later layers, there could be cases where these layers no longer encode the necessary knowledge for correctly predicting the answer. Motivated by this, we propose a novel "back-patching" analysis method whereby a hidden representation from a later layer is patched back to an earlier layer. We find that in up to 57% of previously incorrect cases there exists a back-patch that results in the correct generation of the answer, showing that the later layers indeed sometimes lack the needed functionality. Overall our methods and findings open further opportunities for understanding and improving latent reasoning in transformer-based LLMs.
Personalized large language models (LLMs) have attracted great attention in many applications, such as intelligent education and emotional support. Most work focuses on controlling the character settings based on the profile (e.g., age, skill, experience, and so on). Conversely, the psychological theory-based personality traits with implicit expression and behavior are not well modeled, limiting their potential application in more specialized fields such as the psychological counseling agents. In this paper, we propose a mixture of experts (MoE)-based personalized LLMs, named P-tailor, to model the Big Five Personality Traits. Particularly, we learn specialized LoRA experts to represent various traits, such as openness, conscientiousness, extraversion, agreeableness and neuroticism. Then, we integrate P-Tailor with a personality specialization loss, promoting experts to specialize in distinct personality traits, thereby enhancing the efficiency of model parameter utilization. Due to the lack of datasets, we also curate a high-quality personality crafting dataset (PCD) to learn and develop the ability to exhibit different personality traits across various topics. We conduct extensive experiments to verify the great performance and effectiveness of P-Tailor in manipulation of the fine-grained personality traits of LLMs.
Existing research on large language models (LLMs) shows that they can solve information extraction tasks through multi-step planning. However, their extraction behavior on complex sentences and tasks is unstable, emerging issues such as false positives and missing elements. We observe that decomposing complex extraction tasks and extracting them step by step can effectively improve LLMs' performance, and the extraction orders of entities significantly affect the final results of LLMs. This paper proposes a two-stage multi-step method for LLM-based information extraction and adopts the RL framework to execute the multi-step planning. We regard sequential extraction as a Markov decision process, build an LLM-based extraction environment, design a decision module to adaptively provide the optimal order for sequential entity extraction on different sentences, and utilize the DDQN algorithm to train the decision model. We also design the rewards and evaluation metrics suitable for the extraction results of LLMs. We conduct extensive experiments on multiple public datasets to demonstrate the effectiveness of our method in improving the information extraction capabilities of LLMs.
While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.