亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present the Linear Complexity Sequence Model (LCSM), a comprehensive solution that unites various sequence modeling techniques with linear complexity, including linear attention, state space model, long convolution, and linear RNN, within a single framework. The goal is to enhance comprehension of these models by analyzing the impact of each component from a cohesive and streamlined viewpoint. Specifically, we segment the modeling processes of these models into three distinct stages: Expand, Oscillation, and Shrink (EOS), with each model having its own specific settings. The Expand stage involves projecting the input signal onto a high-dimensional memory state. This is followed by recursive operations performed on the memory state in the Oscillation stage. Finally, the memory state is projected back to a low-dimensional space in the Shrink stage. We perform comprehensive experiments to analyze the impact of different stage settings on language modeling and retrieval tasks. Our results show that data-driven methods are crucial for the effectiveness of the three stages in language modeling, whereas hand-crafted methods yield better performance in retrieval tasks.

相關內容

CLIP models have recently shown to exhibit Out of Distribution (OoD) generalization capabilities. However, Compositional Out of Distribution (C-OoD) generalization, which is a crucial aspect of a model's ability to understand unseen compositions of known concepts, is relatively unexplored for the CLIP models. Our goal is to address this problem and identify the factors that contribute to the C-OoD in CLIPs. We noted that previous studies regarding compositional understanding of CLIPs frequently fail to ensure that test samples are genuinely novel relative to the CLIP training data. To this end, we carefully synthesized a large and diverse dataset in the single object setting, comprising attributes for objects that are highly unlikely to be encountered in the combined training datasets of various CLIP models. This dataset enables an authentic evaluation of C-OoD generalization. Our observations reveal varying levels of C-OoD generalization across different CLIP models. We propose that the disentanglement of CLIP representations serves as a critical indicator in this context. By utilizing our synthesized datasets and other existing datasets, we assess various disentanglement metrics of text and image representations. Our study reveals that the disentanglement of image and text representations, particularly with respect to their compositional elements, plays a crucial role in improving the generalization of CLIP models in out-of-distribution settings. This finding suggests promising opportunities for advancing out-of-distribution generalization in CLIPs.

Learning from Demonstration (LfD) is a widely used technique for skill acquisition in robotics. However, demonstrations of the same skill may exhibit significant variances, or learning systems may attempt to acquire different means of the same skill simultaneously, making it challenging to encode these motions into movement primitives. To address these challenges, we propose an LfD framework, namely the Conditional Neural Expert Processes (CNEP), that learns to assign demonstrations from different modes to distinct expert networks utilizing the inherent information within the latent space to match experts with the encoded representations. CNEP does not require supervision on which mode the trajectories belong to. We compare the performance of CNEP against widely used and powerful LfD methods such as Gaussian Mixture Models, Probabilistic Movement Primitives, and Stable Movement Primitives and show that our method outperforms these baselines on multimodal trajectory datasets. The results reveal enhanced modeling performance for movement primitives, leading to the synthesis of trajectories that more accurately reflect those demonstrated by experts, particularly when the skill demonstrations include intersection points from various trajectories. We evaluated the CNEP model on two real-robot tasks, namely obstacle avoidance and pick-and-place tasks, that require the robot to learn multi-modal motion trajectories and execute the correct primitives given target environment conditions. We also showed that our system is capable of on-the-fly adaptation to environmental changes via an online conditioning mechanism. Lastly, we believe that CNEP offers improved explainability and interpretability by autonomously finding discrete behavior primitives and providing probability values about its expert selection decisions.

In the field of Sequential Decision Making (SDM), two paradigms have historically vied for supremacy: Automated Planning (AP) and Reinforcement Learning (RL). In the spirit of reconciliation, this article reviews AP, RL and hybrid methods (e.g., novel learn to plan techniques) for solving Sequential Decision Processes (SDPs), focusing on their knowledge representation: symbolic, subsymbolic, or a combination. Additionally, it also covers methods for learning the SDP structure. Finally, we compare the advantages and drawbacks of the existing methods and conclude that neurosymbolic AI poses a promising approach for SDM, since it combines AP and RL with a hybrid knowledge representation.

We present a comprehensive study of answer quality evaluation in Retrieval-Augmented Generation (RAG) applications using vRAG-Eval, a novel grading system that is designed to assess correctness, completeness, and honesty. We further map the grading of quality aspects aforementioned into a binary score, indicating an accept or reject decision, mirroring the intuitive "thumbs-up" or "thumbs-down" gesture commonly used in chat applications. This approach suits factual business settings where a clear decision opinion is essential. Our assessment applies vRAG-Eval to two Large Language Models (LLMs), evaluating the quality of answers generated by a vanilla RAG application. We compare these evaluations with human expert judgments and find a substantial alignment between GPT-4's assessments and those of human experts, reaching 83% agreement on accept or reject decisions. This study highlights the potential of LLMs as reliable evaluators in closed-domain, closed-ended settings, particularly when human evaluations require significant resources.

The integration of Internet of Things (IoT) technologies in agriculture holds promise for transforming farming practices, particularly in the Kingdom of Saudi Arabia (KSA). This study explores the adoption of smart farming practices among KSA farmers. Due to the geographical location and nature of KSA, it faces significant challenges in agriculture. The objective of this research is to discuss how IoT will enhance agriculture in KSA and identify its current usage by conducting a study on Saudi farmers with varying ages, regions, and years of experience. The results indicate that 90% of the farmers encounter challenges in farming, and all of them express interest in adopting smart farming to address these issues. While 60% of farmers are currently utilizing IoT technologies, they encounter challenges in implementing smart farming practices. Thus, smart farming presents solutions to prevalent challenges including adverse weather, water scarcity, and labor shortages, though barriers include cost and educational challenges.

Symbolic sentence meaning representations, such as AMR (Abstract Meaning Representation) provide expressive and structured semantic graphs that act as intermediates that simplify downstream NLP tasks. However, the instruction-following capability of large language models (LLMs) offers a shortcut to effectively solve NLP tasks, questioning the utility of semantic graphs. Meanwhile, recent work has also shown the difficulty of using meaning representations merely as a helpful auxiliary for LLMs. We revisit the position of semantic graphs in syntactic simplification, the task of simplifying sentence structures while preserving their meaning, which requires semantic understanding, and evaluate it on a new complex and natural dataset. The AMR-based method that we propose, AMRS$^3$, demonstrates that state-of-the-art meaning representations can lead to easy-to-implement simplification methods with competitive performance and unique advantages in cost, interpretability, and generalization. With AMRS$^3$ as an anchor, we discover that syntactic simplification is a task where semantic graphs are helpful in LLM prompting. We propose AMRCoC prompting that guides LLMs to emulate graph algorithms for explicit symbolic reasoning on AMR graphs, and show its potential for improving LLM on semantic-centered tasks like syntactic simplification.

Solving the Traveling Salesperson Problem (TSP) remains a persistent challenge, despite its fundamental role in numerous generalized applications in modern contexts. Heuristic solvers address the demand for finding high-quality solutions efficiently. Among these solvers, the Lin-Kernighan-Helsgaun (LKH) heuristic stands out, as it complements the performance of genetic algorithms across a diverse range of problem instances. However, frequent timeouts on challenging instances hinder the practical applicability of the solver. Within this work, we investigate a previously overlooked factor contributing to many timeouts: The use of a fixed candidate set based on a tree structure. Our investigations reveal that candidate sets based on Hamiltonian circuits contain more optimal edges. We thus propose to integrate this promising initialization strategy, in the form of POPMUSIC, within an efficient restart version of LKH. As confirmed by our experimental studies, this refined TSP heuristic is much more efficient - causing fewer timeouts and improving the performance (in terms of penalized average runtime) by an order of magnitude - and thereby challenges the state of the art in TSP solving.

Large Language Models for Code (code LLMs) have demonstrated remarkable performance across various software engineering (SE) tasks, increasing the application of code LLMs in software development. Despite the success of code LLMs, there remain significant concerns about the actual capabilities and reliability of these models, "whether these models really learn the semantics of code from the training data and leverage the learned knowledge to perform the SE tasks". In this paper, we introduce EMPICA, a comprehensive framework designed to systematically and empirically evaluate the capabilities of code LLMs in understanding code semantics. Specifically, EMPICA systematically introduces controlled modifications/transformations into the input code and examines the models' responses. Generally, code LLMs must be robust to semantically equivalent code inputs and be sensitive to non-equivalent ones for all SE tasks. Specifically, for every SE task, given an input code snippet c and its semantic equivalent variants, code LLMs must robustly produce consistent/equivalent outputs while they are expected to generate different outputs for c and its semantic non-equivalent variants. Our experimental results on three representative code understanding tasks, including code summarization, method name prediction, and output prediction, reveal that the robustness and sensitivity of the state-of-the-art code LLMs to code transformations vary significantly across tasks and transformation operators. In addition, the code LLMs exhibit better robustness to the semantic preserving transformations than their sensitivity to the semantic non-preserving transformations. These results highlight a need to enhance the model's capabilities of understanding code semantics, especially the sensitivity property.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Seeking the equivalent entities among multi-source Knowledge Graphs (KGs) is the pivotal step to KGs integration, also known as \emph{entity alignment} (EA). However, most existing EA methods are inefficient and poor in scalability. A recent summary points out that some of them even require several days to deal with a dataset containing 200,000 nodes (DWY100K). We believe over-complex graph encoder and inefficient negative sampling strategy are the two main reasons. In this paper, we propose a novel KG encoder -- Dual Attention Matching Network (Dual-AMN), which not only models both intra-graph and cross-graph information smartly, but also greatly reduces computational complexity. Furthermore, we propose the Normalized Hard Sample Mining Loss to smoothly select hard negative samples with reduced loss shift. The experimental results on widely used public datasets indicate that our method achieves both high accuracy and high efficiency. On DWY100K, the whole running process of our method could be finished in 1,100 seconds, at least 10* faster than previous work. The performances of our method also outperform previous works across all datasets, where Hits@1 and MRR have been improved from 6% to 13%.

北京阿比特科技有限公司