In this paper, we explore the potential of Snapshot Compressive Imaging (SCI) technique for recovering the underlying 3D scene representation from a single temporal compressed image. SCI is a cost-effective method that enables the recording of high-dimensional data, such as hyperspectral or temporal information, into a single image using low-cost 2D imaging sensors. To achieve this, a series of specially designed 2D masks are usually employed, which not only reduces storage requirements but also offers potential privacy protection. Inspired by this, to take one step further, our approach builds upon the powerful 3D scene representation capabilities of neural radiance fields (NeRF). Specifically, we formulate the physical imaging process of SCI as part of the training of NeRF, allowing us to exploit its impressive performance in capturing complex scene structures. To assess the effectiveness of our method, we conduct extensive evaluations using both synthetic data and real data captured by our SCI system. Extensive experimental results demonstrate that our proposed approach surpasses the state-of-the-art methods in terms of image reconstruction and novel view image synthesis. Moreover, our method also exhibits the ability to restore high frame-rate multi-view consistent images by leveraging SCI and the rendering capabilities of NeRF. The code is available at //github.com/WU-CVGL/SCINeRF.
In this paper, we introduce an alternative approach to enhancing Multi-Agent Reinforcement Learning (MARL) through the integration of domain knowledge and attention-based policy mechanisms. Our methodology focuses on the incorporation of domain-specific expertise into the learning process, which simplifies the development of collaborative behaviors. This approach aims to reduce the complexity and learning overhead typically associated with MARL by enabling agents to concentrate on essential aspects of complex tasks, thus optimizing the learning curve. The utilization of attention mechanisms plays a key role in our model. It allows for the effective processing of dynamic context data and nuanced agent interactions, leading to more refined decision-making. Applied in standard MARL scenarios, such as the Stanford Intelligent Systems Laboratory (SISL) Pursuit and Multi-Particle Environments (MPE) Simple Spread, our method has been shown to improve both learning efficiency and the effectiveness of collaborative behaviors. The results indicate that our attention-based approach can be a viable approach for improving the efficiency of MARL training process, integrating domain-specific knowledge at the action level.
In this work, we recover the underlying 3D structure of non-geometrically consistent scenes. We focus our analysis on hand-drawn images from cartoons and anime. Many cartoons are created by artists without a 3D rendering engine, which means that any new image of a scene is hand-drawn. The hand-drawn images are usually faithful representations of the world, but only in a qualitative sense, since it is difficult for humans to draw multiple perspectives of an object or scene 3D consistently. Nevertheless, people can easily perceive 3D scenes from inconsistent inputs! In this work, we correct for 2D drawing inconsistencies to recover a plausible 3D structure such that the newly warped drawings are consistent with each other. Our pipeline consists of a user-friendly annotation tool, camera pose estimation, and image deformation to recover a dense structure. Our method warps images to obey a perspective camera model, enabling our aligned results to be plugged into novel-view synthesis reconstruction methods to experience cartoons from viewpoints never drawn before. Our project page is //toon3d.studio .
In this paper, we explore the existing challenges in 3D artistic scene generation by introducing ART3D, a novel framework that combines diffusion models and 3D Gaussian splatting techniques. Our method effectively bridges the gap between artistic and realistic images through an innovative image semantic transfer algorithm. By leveraging depth information and an initial artistic image, we generate a point cloud map, addressing domain differences. Additionally, we propose a depth consistency module to enhance 3D scene consistency. Finally, the 3D scene serves as initial points for optimizing Gaussian splats. Experimental results demonstrate ART3D's superior performance in both content and structural consistency metrics when compared to existing methods. ART3D significantly advances the field of AI in art creation by providing an innovative solution for generating high-quality 3D artistic scenes.
In this paper, we introduce the Polish Massive Text Embedding Benchmark (PL-MTEB), a comprehensive benchmark for text embeddings in Polish. The PL-MTEB consists of 28 diverse NLP tasks from 5 task types. We adapted the tasks based on previously used datasets by the Polish NLP community. In addition, we created a new PLSC (Polish Library of Science Corpus) dataset consisting of titles and abstracts of scientific publications in Polish, which was used as the basis for two novel clustering tasks. We evaluated 15 publicly available models for text embedding, including Polish and multilingual ones, and collected detailed results for individual tasks and aggregated results for each task type and the entire benchmark. PL-MTEB comes with open-source code at //github.com/rafalposwiata/pl-mteb.
In this paper, we dive into the reliability concerns of Integrated Gradients (IG), a prevalent feature attribution method for black-box deep learning models. We particularly address two predominant challenges associated with IG: the generation of noisy feature visualizations for vision models and the vulnerability to adversarial attributional attacks. Our approach involves an adaptation of path-based feature attribution, aligning the path of attribution more closely to the intrinsic geometry of the data manifold. Our experiments utilise deep generative models applied to several real-world image datasets. They demonstrate that IG along the geodesics conforms to the curved geometry of the Riemannian data manifold, generating more perceptually intuitive explanations and, subsequently, substantially increasing robustness to targeted attributional attacks.
In this paper, we explore the power of Quantum Machine Learning as we extend, implement and evaluate algorithms like Quantum Support Vector Classifier (QSVC), Pegasos-QSVC, Variational Quantum Circuits (VQC), and Quantum Neural Networks (QNN) in Qiskit with diverse feature mapping techniques for genomic sequence classification.
In this paper, we present the findings of our Project ALPINE which stands for ``Autoregressive Learning for Planning In NEtworks." Project ALPINE initiates a theoretical investigation into the development of planning capabilities in Transformer-based language models through their autoregressive learning mechanisms, aiming to identify any potential limitations in their planning abilities. We abstract planning as a network path-finding task where the objective is to generate a valid path from a specified source node to a designated target node. In terms of expressiveness, we show that the Transformer is capable of executing path-finding by embedding the adjacency and reachability matrices within its weights. Our theoretical analysis of the gradient-based learning dynamic of the Transformer reveals that the Transformer is capable of learning both the adjacency matrix and a limited form of the reachability matrix. These theoretical insights are then validated through experiments, which demonstrate that the Transformer indeed learns the adjacency matrix and an incomplete reachability matrix, which aligns with the predictions made in our theoretical analysis. Additionally, when applying our methodology to a real-world planning benchmark, called Blocksworld, our observations remain consistent. Our theoretical and empirical analyses further unveil a potential limitation of Transformer in path-finding: it cannot identify reachability relationships through transitivity, and thus would fail when path concatenation is needed to generate a path. In summary, our findings shed new light on how the internal mechanisms of autoregressive learning enable planning in networks. This study may contribute to our understanding of the general planning capabilities in other related domains.
In this paper, we address the segmentation of tumor subtypes in whole slide images (WSI) by utilizing incomplete label proportions. Specifically, we utilize `partial' label proportions, which give the proportions among tumor subtypes but do not give the proportion between tumor and non-tumor. Partial label proportions are recorded as the standard diagnostic information by pathologists, and we, therefore, want to use them for realizing the segmentation model that can classify each WSI patch into one of the tumor subtypes or non-tumor. We call this problem ``learning from partial label proportions (LPLP)'' and formulate the problem as a weakly supervised learning problem. Then, we propose an efficient algorithm for this challenging problem by decomposing it into two weakly supervised learning subproblems: multiple instance learning (MIL) and learning from label proportions (LLP). These subproblems are optimized efficiently in the end-to-end manner. The effectiveness of our algorithm is demonstrated through experiments conducted on two WSI datasets.
In this paper, we introduce EconLogicQA, a rigorous benchmark designed to assess the sequential reasoning capabilities of large language models (LLMs) within the intricate realms of economics, business, and supply chain management. Diverging from traditional benchmarks that predict subsequent events individually, EconLogicQA poses a more challenging task: it requires models to discern and sequence multiple interconnected events, capturing the complexity of economic logics. EconLogicQA comprises an array of multi-event scenarios derived from economic articles, which necessitate an insightful understanding of both temporal and logical event relationships. Through comprehensive evaluations, we exhibit that EconLogicQA effectively gauges a LLM's proficiency in navigating the sequential complexities inherent in economic contexts. We provide a detailed description of EconLogicQA dataset and shows the outcomes from evaluating the benchmark across various leading-edge LLMs, thereby offering a thorough perspective on their sequential reasoning potential in economic contexts. Our benchmark dataset is available at //huggingface.co/datasets/yinzhu-quan/econ_logic_qa.
In this paper, we explore the generation of one-liner jokes through multi-step reasoning. Our work involved reconstructing the process behind creating humorous one-liners and developing a working prototype for humor generation. We conducted comprehensive experiments with human participants to evaluate our approach, comparing it with human-created jokes, zero-shot GPT-4 generated humor, and other baselines. The evaluation focused on the quality of humor produced, using human labeling as a benchmark. Our findings demonstrate that the multi-step reasoning approach consistently improves the quality of generated humor. We present the results and share the datasets used in our experiments, offering insights into enhancing humor generation with artificial intelligence.