We show that the two-stage minimum description length (MDL) criterion widely used to estimate linear change-point (CP) models corresponds to the marginal likelihood of a Bayesian model with a specific class of prior distributions. This allows results from the frequentist and Bayesian paradigms to be bridged together. Thanks to this link, one can rely on the consistency of the number and locations of the estimated CPs and the computational efficiency of frequentist methods, and obtain a probability of observing a CP at a given time, compute model posterior probabilities, and select or combine CP methods via Bayesian posteriors. Furthermore, we adapt several CP methods to take advantage of the MDL probabilistic representation. Based on simulated data, we show that the adapted CP methods can improve structural break detection compared to state-of-the-art approaches. Finally, we empirically illustrate the usefulness of combining CP detection methods when dealing with long time series and forecasting.
We consider the problem of finite-time identification of linear dynamical systems from $T$ samples of a single trajectory. Recent results have predominantly focused on the setup where no structural assumption is made on the system matrix $A^* \in \mathbb{R}^{n \times n}$, and have consequently analyzed the ordinary least squares (OLS) estimator in detail. We assume prior structural information on $A^*$ is available, which can be captured in the form of a convex set $\mathcal{K}$ containing $A^*$. For the solution of the ensuing constrained least squares estimator, we derive non-asymptotic error bounds in the Frobenius norm that depend on the local size of $\mathcal{K}$ at $A^*$. To illustrate the usefulness of these results, we instantiate them for three examples, namely when (i) $A^*$ is sparse and $\mathcal{K}$ is a suitably scaled $\ell_1$ ball; (ii) $\mathcal{K}$ is a subspace; (iii) $\mathcal{K}$ consists of matrices each of which is formed by sampling a bivariate convex function on a uniform $n \times n$ grid (convex regression). In all these situations, we show that $A^*$ can be reliably estimated for values of $T$ much smaller than what is needed for the unconstrained setting.
In recent years, there has been a growing interest in understanding complex microstructures and their effect on macroscopic properties. In general, it is difficult to derive an effective constitutive law for such microstructures with reasonable accuracy and meaningful parameters. One numerical approach to bridge the scales is computational homogenization, in which a microscopic problem is solved at every macroscopic point, essentially replacing the effective constitutive model. Such approaches are, however, computationally expensive and typically infeasible in multi-query contexts such as optimization and material design. To render these analyses tractable, surrogate models that can accurately approximate and accelerate the microscopic problem over a large design space of shapes, material and loading parameters are required. In previous works, such models were constructed in a data-driven manner using methods such as Neural Networks (NN) or Gaussian Process Regression (GPR). However, these approaches currently suffer from issues, such as need for large amounts of training data, lack of physics, and considerable extrapolation errors. In this work, we develop a reduced order model based on Proper Orthogonal Decomposition (POD), Empirical Cubature Method (ECM) and a geometrical transformation method with the following key features: (i) large shape variations of the microstructure are captured, (ii) only relatively small amounts of training data are necessary, and (iii) highly non-linear history-dependent behaviors are treated. The proposed framework is tested and examined in two numerical examples, involving two scales and large geometrical variations. In both cases, high speed-ups and accuracies are achieved while observing good extrapolation behavior.
Robust iterative methods for solving large sparse systems of linear algebraic equations often suffer from the problem of optimizing the corresponding tuning parameters. To improve the performance of the problem of interest, specific parameter tuning is required, which in practice can be a time-consuming and tedious task. This paper proposes an optimization algorithm for tuning the numerical method parameters. The algorithm combines the evolution strategy with the pre-trained neural network used to filter the individuals when constructing the new generation. The proposed coupling of two optimization approaches allows to integrate the adaptivity properties of the evolution strategy with a priori knowledge realized by the neural network. The use of the neural network as a preliminary filter allows for significant weakening of the prediction accuracy requirements and reusing the pre-trained network with a wide range of linear systems. The detailed algorithm efficiency evaluation is performed for a set of model linear systems, including the ones from the SuiteSparse Matrix Collection and the systems from the turbulent flow simulations. The obtained results show that the pre-trained neural network can be effectively reused to optimize parameters for various linear systems, and a significant speedup in the calculations can be achieved at the cost of about 100 trial solves. The hybrid evolution strategy decreases the calculation time by more than 6 times for the black box matrices from the SuiteSparse Matrix Collection and by a factor of 1.4-2 for the sequence of linear systems when modeling turbulent flows. This results in a speedup of up to 1.8 times for the turbulent flow simulations performed in the paper.
Graph-based two-sample tests and graph-based change-point detection that utilize similarity graphs provide powerful tools for analyzing high-dimensional and non-Euclidean data as these methods do not impose distributional assumptions and have good performance across various scenarios. Current graph-based tests that deliver efficacy across a broad spectrum of alternatives typically reply on the $K$-nearest neighbor graph or the $K$-minimum spanning tree. However, these graphs can be vulnerable for high-dimensional data due to the curse of dimensionality. To mitigate this issue, we propose to use a robust graph that is considerably less influenced by the curse of dimensionality. We also establish a theoretical foundation for graph-based methods utilizing this proposed robust graph and demonstrate its consistency under fixed alternatives for both low-dimensional and high-dimensional data.
Diffusion models are a class of deep generative models that have shown impressive results on various tasks with dense theoretical founding. Although diffusion models have achieved impressive quality and diversity of sample synthesis than other state-of-the-art models, they still suffer from costly sampling procedure and sub-optimal likelihood estimation. Recent studies have shown great enthusiasm on improving the performance of diffusion model. In this article, we present a first comprehensive review of existing variants of the diffusion models. Specifically, we provide a first taxonomy of diffusion models and categorize them variants to three types, namely sampling-acceleration enhancement, likelihood-maximization enhancement and data-generalization enhancement. We also introduce in detail other five generative models (i.e., variational autoencoders, generative adversarial networks, normalizing flow, autoregressive models, and energy-based models), and clarify the connections between diffusion models and these generative models. Then we make a thorough investigation into the applications of diffusion models, including computer vision, natural language processing, waveform signal processing, multi-modal modeling, molecular graph generation, time series modeling, and adversarial purification. Furthermore, we propose new perspectives pertaining to the development of this generative model.
Inspired by the human cognitive system, attention is a mechanism that imitates the human cognitive awareness about specific information, amplifying critical details to focus more on the essential aspects of data. Deep learning has employed attention to boost performance for many applications. Interestingly, the same attention design can suit processing different data modalities and can easily be incorporated into large networks. Furthermore, multiple complementary attention mechanisms can be incorporated in one network. Hence, attention techniques have become extremely attractive. However, the literature lacks a comprehensive survey specific to attention techniques to guide researchers in employing attention in their deep models. Note that, besides being demanding in terms of training data and computational resources, transformers only cover a single category in self-attention out of the many categories available. We fill this gap and provide an in-depth survey of 50 attention techniques categorizing them by their most prominent features. We initiate our discussion by introducing the fundamental concepts behind the success of attention mechanism. Next, we furnish some essentials such as the strengths and limitations of each attention category, describe their fundamental building blocks, basic formulations with primary usage, and applications specifically for computer vision. We also discuss the challenges and open questions related to attention mechanism in general. Finally, we recommend possible future research directions for deep attention.
This PhD thesis contains several contributions to the field of statistical causal modeling. Statistical causal models are statistical models embedded with causal assumptions that allow for the inference and reasoning about the behavior of stochastic systems affected by external manipulation (interventions). This thesis contributes to the research areas concerning the estimation of causal effects, causal structure learning, and distributionally robust (out-of-distribution generalizing) prediction methods. We present novel and consistent linear and non-linear causal effects estimators in instrumental variable settings that employ data-dependent mean squared prediction error regularization. Our proposed estimators show, in certain settings, mean squared error improvements compared to both canonical and state-of-the-art estimators. We show that recent research on distributionally robust prediction methods has connections to well-studied estimators from econometrics. This connection leads us to prove that general K-class estimators possess distributional robustness properties. We, furthermore, propose a general framework for distributional robustness with respect to intervention-induced distributions. In this framework, we derive sufficient conditions for the identifiability of distributionally robust prediction methods and present impossibility results that show the necessity of several of these conditions. We present a new structure learning method applicable in additive noise models with directed trees as causal graphs. We prove consistency in a vanishing identifiability setup and provide a method for testing substructure hypotheses with asymptotic family-wise error control that remains valid post-selection. Finally, we present heuristic ideas for learning summary graphs of nonlinear time-series models.
This paper surveys and organizes research works in a new paradigm in natural language processing, which we dub "prompt-based learning". Unlike traditional supervised learning, which trains a model to take in an input x and predict an output y as P(y|x), prompt-based learning is based on language models that model the probability of text directly. To use these models to perform prediction tasks, the original input x is modified using a template into a textual string prompt x' that has some unfilled slots, and then the language model is used to probabilistically fill the unfilled information to obtain a final string x, from which the final output y can be derived. This framework is powerful and attractive for a number of reasons: it allows the language model to be pre-trained on massive amounts of raw text, and by defining a new prompting function the model is able to perform few-shot or even zero-shot learning, adapting to new scenarios with few or no labeled data. In this paper we introduce the basics of this promising paradigm, describe a unified set of mathematical notations that can cover a wide variety of existing work, and organize existing work along several dimensions, e.g.the choice of pre-trained models, prompts, and tuning strategies. To make the field more accessible to interested beginners, we not only make a systematic review of existing works and a highly structured typology of prompt-based concepts, but also release other resources, e.g., a website //pretrain.nlpedia.ai/ including constantly-updated survey, and paperlist.
The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.
Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.