Numerical models have long been used to understand geoscientific phenomena, including tidal currents, crucial for renewable energy production and coastal engineering. However, their computational cost hinders generating data of varying resolutions. As an alternative, deep learning-based downscaling methods have gained traction due to their faster inference speeds. But most of them are limited to only inference fixed scale and overlook important characteristics of target geoscientific data. In this paper, we propose a novel downscaling framework for tidal current data, addressing its unique characteristics, which are dissimilar to images: heterogeneity and local dependency. Moreover, our framework can generate any arbitrary-scale output utilizing a continuous representation model. Our proposed framework demonstrates significantly improved flow velocity predictions by 93.21% (MSE) and 63.85% (MAE) compared to the Baseline model while achieving a remarkable 33.2% reduction in FLOPs.
Background: Missing data is a common challenge in mass spectrometry-based metabolomics, which can lead to biased and incomplete analyses. The integration of whole-genome sequencing (WGS) data with metabolomics data has emerged as a promising approach to enhance the accuracy of data imputation in metabolomics studies. Method: In this study, we propose a novel method that leverages the information from WGS data and reference metabolites to impute unknown metabolites. Our approach utilizes a multi-view variational autoencoder to jointly model the burden score, polygenetic risk score (PGS), and linkage disequilibrium (LD) pruned single nucleotide polymorphisms (SNPs) for feature extraction and missing metabolomics data imputation. By learning the latent representations of both omics data, our method can effectively impute missing metabolomics values based on genomic information. Results: We evaluate the performance of our method on empirical metabolomics datasets with missing values and demonstrate its superiority compared to conventional imputation techniques. Using 35 template metabolites derived burden scores, PGS and LD-pruned SNPs, the proposed methods achieved R^2-scores > 0.01 for 71.55% of metabolites. Conclusion: The integration of WGS data in metabolomics imputation not only improves data completeness but also enhances downstream analyses, paving the way for more comprehensive and accurate investigations of metabolic pathways and disease associations. Our findings offer valuable insights into the potential benefits of utilizing WGS data for metabolomics data imputation and underscore the importance of leveraging multi-modal data integration in precision medicine research.
Given the remarkable achievements in image generation through diffusion models, the research community has shown increasing interest in extending these models to video generation. Recent diffusion models for video generation have predominantly utilized attention layers to extract temporal features. However, attention layers are limited by their memory consumption, which increases quadratically with the length of the sequence. This limitation presents significant challenges when attempting to generate longer video sequences using diffusion models. To overcome this challenge, we propose leveraging state-space models (SSMs). SSMs have recently gained attention as viable alternatives due to their linear memory consumption relative to sequence length. In the experiments, we first evaluate our SSM-based model with UCF101, a standard benchmark of video generation. In addition, to investigate the potential of SSMs for longer video generation, we perform an experiment using the MineRL Navigate dataset, varying the number of frames to 64 and 150. In these settings, our SSM-based model can considerably save memory consumption for longer sequences, while maintaining competitive FVD scores to the attention-based models. Our codes are available at //github.com/shim0114/SSM-Meets-Video-Diffusion-Models.
Gaussian processes (GPs) are commonly used for geospatial analysis, but they suffer from high computational complexity when dealing with massive data. For instance, the log-likelihood function required in estimating the statistical model parameters for geospatial data is a computationally intensive procedure that involves computing the inverse of a covariance matrix with size n X n, where n represents the number of geographical locations. As a result, in the literature, studies have shifted towards approximation methods to handle larger values of n effectively while maintaining high accuracy. These methods encompass a range of techniques, including low-rank and sparse approximations. Vecchia approximation is one of the most promising methods to speed up evaluating the log-likelihood function. This study presents a parallel implementation of the Vecchia approximation, utilizing batched matrix computations on contemporary GPUs. The proposed implementation relies on batched linear algebra routines to efficiently execute individual conditional distributions in the Vecchia algorithm. We rely on the KBLAS linear algebra library to perform batched linear algebra operations, reducing the time to solution compared to the state-of-the-art parallel implementation of the likelihood estimation operation in the ExaGeoStat software by up to 700X, 833X, 1380X on 32GB GV100, 80GB A100, and 80GB H100 GPUs, respectively. We also successfully manage larger problem sizes on a single NVIDIA GPU, accommodating up to 1M locations with 80GB A100 and H100 GPUs while maintaining the necessary application accuracy. We further assess the accuracy performance of the implemented algorithm, identifying the optimal settings for the Vecchia approximation algorithm to preserve accuracy on two real geospatial datasets: soil moisture data in the Mississippi Basin area and wind speed data in the Middle East.
Effective out-of-distribution (OOD) detection is crucial for reliable machine learning models, yet most current methods are limited in practical use due to requirements like access to training data or intervention in training. We present a novel method for detecting OOD data in Transformers based on transformation smoothness between intermediate layers of a network (BLOOD), which is applicable to pre-trained models without access to training data. BLOOD utilizes the tendency of between-layer representation transformations of in-distribution (ID) data to be smoother than the corresponding transformations of OOD data, a property that we also demonstrate empirically. We evaluate BLOOD on several text classification tasks with Transformer networks and demonstrate that it outperforms methods with comparable resource requirements. Our analysis also suggests that when learning simpler tasks, OOD data transformations maintain their original sharpness, whereas sharpness increases with more complex tasks.
Recent advances in deep learning have enabled us to address the curse of dimensionality (COD) by solving problems in higher dimensions. A subset of such approaches of addressing the COD has led us to solving high-dimensional PDEs. This has resulted in opening doors to solving a variety of real-world problems ranging from mathematical finance to stochastic control for industrial applications. Although feasible, these deep learning methods are still constrained by training time and memory. Tackling these shortcomings, Tensor Neural Networks (TNN) demonstrate that they can provide significant parameter savings while attaining the same accuracy as compared to the classical Dense Neural Network (DNN). In addition, we also show how TNN can be trained faster than DNN for the same accuracy. Besides TNN, we also introduce Tensor Network Initializer (TNN Init), a weight initialization scheme that leads to faster convergence with smaller variance for an equivalent parameter count as compared to a DNN. We benchmark TNN and TNN Init by applying them to solve the parabolic PDE associated with the Heston model, which is widely used in financial pricing theory.
Due to its conceptual simplicity and generality, compressive neural representation has emerged as a promising alternative to traditional compression methods for managing massive volumetric datasets. The current practice of neural compression utilizes a single large multilayer perceptron (MLP) to encode the global volume, incurring slow training and inference. This paper presents an efficient compressive neural representation (ECNR) solution for time-varying data compression, utilizing the Laplacian pyramid for adaptive signal fitting. Following a multiscale structure, we leverage multiple small MLPs at each scale for fitting local content or residual blocks. By assigning similar blocks to the same MLP via size uniformization, we enable balanced parallelization among MLPs to significantly speed up training and inference. Working in concert with the multiscale structure, we tailor a deep compression strategy to compact the resulting model. We show the effectiveness of ECNR with multiple datasets and compare it with state-of-the-art compression methods (mainly SZ3, TTHRESH, and neurcomp). The results position ECNR as a promising solution for volumetric data compression.
Current natural language understanding (NLU) models have been continuously scaling up, both in terms of model size and input context, introducing more hidden and input neurons. While this generally improves performance on average, the extra neurons do not yield a consistent improvement for all instances. This is because some hidden neurons are redundant, and the noise mixed in input neurons tends to distract the model. Previous work mainly focuses on extrinsically reducing low-utility neurons by additional post- or pre-processing, such as network pruning and context selection, to avoid this problem. Beyond that, can we make the model reduce redundant parameters and suppress input noise by intrinsically enhancing the utility of each neuron? If a model can efficiently utilize neurons, no matter which neurons are ablated (disabled), the ablated submodel should perform no better than the original full model. Based on such a comparison principle between models, we propose a cross-model comparative loss for a broad range of tasks. Comparative loss is essentially a ranking loss on top of the task-specific losses of the full and ablated models, with the expectation that the task-specific loss of the full model is minimal. We demonstrate the universal effectiveness of comparative loss through extensive experiments on 14 datasets from 3 distinct NLU tasks based on 5 widely used pretrained language models and find it particularly superior for models with few parameters or long input.
Cooperative co-evolution (CC) algorithms, based on the divide-and-conquer strategy, have emerged as the predominant approach to solving large-scale global optimization (LSGO) problems. The efficiency and accuracy of the grouping stage significantly impact the performance of the optimization process. While the general separability grouping (GSG) method has overcome the limitation of previous differential grouping (DG) methods by enabling the decomposition of non-additively separable functions, it suffers from high computational complexity. To address this challenge, this article proposes a composite separability grouping (CSG) method, seamlessly integrating DG and GSG into a problem decomposition framework to utilize the strengths of both approaches. CSG introduces a step-by-step decomposition framework that accurately decomposes various problem types using fewer computational resources. By sequentially identifying additively, multiplicatively and generally separable variables, CSG progressively groups non-separable variables by recursively considering the interactions between each non-separable variable and the formed non-separable groups. Furthermore, to enhance the efficiency and accuracy of CSG, we introduce two innovative methods: a multiplicatively separable variable detection method and a non-separable variable grouping method. These two methods are designed to effectively detect multiplicatively separable variables and efficiently group non-separable variables, respectively. Extensive experimental results demonstrate that CSG achieves more accurate variable grouping with lower computational complexity compared to GSG and state-of-the-art DG series designs.
Conservation laws are an inherent feature in many systems modeling real world phenomena, in particular, those modeling biological and chemical systems. If the form of the underlying dynamical system is known, linear algebra and algebraic geometry methods can be used to identify the conservation laws. Our work focuses on using data-driven methods to identify the conservation law(s) in the absence of the knowledge of system dynamics. Building in part upon the ideas proposed in [arXiv:1811.00961], we develop a robust data-driven computational framework that automates the process of identifying the number and type of the conservation law(s) while keeping the amount of required data to a minimum. We demonstrate that due to relative stability of singular vectors to noise we are able to reconstruct correct conservation laws without the need for excessive parameter tuning. While we focus primarily on biological examples, the framework proposed herein is suitable for a variety of data science applications and can be coupled with other machine learning approaches.
Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.