Conventional methods for student modeling, which involve predicting grades based on measured activities, struggle to provide accurate results for minority/underrepresented student groups due to data availability biases. In this paper, we propose a Multi-Layer Personalized Federated Learning (MLPFL) methodology that optimizes inference accuracy over different layers of student grouping criteria, such as by course and by demographic subgroups within each course. In our approach, personalized models for individual student subgroups are derived from a global model, which is trained in a distributed fashion via meta-gradient updates that account for subgroup heterogeneity while preserving modeling commonalities that exist across the full dataset. The evaluation of the proposed methodology considers case studies of two popular downstream student modeling tasks, knowledge tracing and outcome prediction, which leverage multiple modalities of student behavior (e.g., visits to lecture videos and participation on forums) in model training. Experiments on three real-world online course datasets show significant improvements achieved by our approach over existing student modeling benchmarks, as evidenced by an increased average prediction quality and decreased variance across different student subgroups. Visual analysis of the resulting students' knowledge state embeddings confirm that our personalization methodology extracts activity patterns clustered into different student subgroups, consistent with the performance enhancements we obtain over the baselines.
Task arithmetic has recently emerged as a cost-effective and scalable approach to edit pre-trained models directly in weight space, by adding the fine-tuned weights of different tasks. The performance has been further improved by a linear property which is illustrated by weight disentanglement. Yet, conventional linearization methods (e.g., NTK linearization) not only double the time and training cost but also have a disadvantage on single-task performance. We propose a simple yet effective and efficient method that only fine-tunes linear layers, which improves weight disentanglement and efficiency simultaneously. Specifically, our study reveals that only fine-tuning the linear layers in the attention modules makes the whole model occur in a linear regime, significantly improving weight disentanglement. To further understand how our method improves the disentanglement of task arithmetic, we present a comprehensive study of task arithmetic by differentiating the role of representation model and task-specific model. In particular, we find that the representation model plays an important role in improving weight disentanglement whereas the task-specific models such as the classification heads can degenerate the weight disentanglement performance. Overall, our work uncovers novel insights into the fundamental mechanisms of task arithmetic and offers a more reliable and effective approach to editing pre-trained models.
With the increasing demand for large-scale training of machine learning models, fully decentralized optimization methods have recently been advocated as alternatives to the popular parameter server framework. In this paradigm, each worker maintains a local estimate of the optimal parameter vector, and iteratively updates it by waiting and averaging all estimates obtained from its neighbors, and then corrects it on the basis of its local dataset. However, the synchronization phase is sensitive to stragglers. An efficient way to mitigate this effect is to consider asynchronous updates, where each worker computes stochastic gradients and communicates with other workers at its own pace. Unfortunately, fully asynchronous updates suffer from staleness of stragglers' parameters. To address these limitations, we propose a fully decentralized algorithm DSGD-AAU with adaptive asynchronous updates via adaptively determining the number of neighbor workers for each worker to communicate with. We show that DSGD-AAU achieves a linear speedup for convergence and demonstrate its effectiveness via extensive experiments.
Multi-fidelity models are becoming more prevalent in engineering, particularly in aerospace, as they combine both the computational efficiency of low-fidelity models with the high accuracy of higher-fidelity simulations. Various state-of-the-art techniques exist for fusing data from different fidelity sources, including Co-Kriging and transfer learning in neural networks. This paper aims to implement a multi-fidelity Bayesian neural network model that applies transfer learning to fuse data generated by models at different fidelities. Bayesian neural networks use probability distributions over network weights, enabling them to provide predictions along with estimates of their confidence. This approach harnesses the predictive and data fusion capabilities of neural networks while also quantifying uncertainty. The results demonstrate that the multi-fidelity Bayesian model outperforms the state-of-the-art Co-Kriging in terms of overall accuracy and robustness on unseen data.
Data augmentation is widely applied and has shown its benefits in different machine learning tasks. However, as recently observed in some downstream tasks, data augmentation may introduce an unfair impact on classifications. While it can improve the performance of some classes, it can actually be detrimental for other classes, which can be problematic in some application domains. In this paper, to counteract this phenomenon, we propose a FAir Classification approach with a Two-player game (FACT). We first formulate the training of a classifier with data augmentation as a fair optimization problem, which can be further written as an adversarial two-player game. Following this formulation, we propose a novel multiplicative weight optimization algorithm, for which we theoretically prove that it can converge to a solution that is fair over classes. Interestingly, our formulation also reveals that this fairness issue over classes is not due to data augmentation only, but is in fact a general phenomenon. Our empirical experiments demonstrate that the performance of our learned classifiers is indeed more fairly distributed over classes in five datasets, with only limited impact on the average accuracy.
Predictive student models are increasingly used in learning environments. However, due to the rising social impact of their usage, it is now all the more important for these models to be both sufficiently accurate and fair in their predictions. To evaluate algorithmic fairness, a new metric has been developed in education, namely the Model Absolute Density Distance (MADD). This metric enables us to measure how different a predictive model behaves regarding two groups of students, in order to quantify its algorithmic unfairness. In this paper, we thus develop a post-processing method based on this metric, that aims at improving the fairness while preserving the accuracy of relevant predictive models' results. We experiment with our approach on the task of predicting student success in an online course, using both simulated and real-world educational data, and obtain successful results. Our source code and data are in open access at //github.com/melinaverger/MADD .
Combining the predictions of multiple trained models through ensembling is generally a good way to improve accuracy by leveraging the different learned features of the models, however it comes with high computational and storage costs. Model fusion, the act of merging multiple models into one by combining their parameters reduces these costs but doesn't work as well in practice. Indeed, neural network loss landscapes are high-dimensional and non-convex and the minima found through learning are typically separated by high loss barriers. Numerous recent works have been focused on finding permutations matching one network features to the features of a second one, lowering the loss barrier on the linear path between them in parameter space. However, permutations are restrictive since they assume a one-to-one mapping between the different models' neurons exists. We propose a new model merging algorithm, CCA Merge, which is based on Canonical Correlation Analysis and aims to maximize the correlations between linear combinations of the model features. We show that our alignment method leads to better performances than past methods when averaging models trained on the same, or differing data splits. We also extend this analysis into the harder setting where more than 2 models are merged, and we find that CCA Merge works significantly better than past methods. Our code is publicly available at //github.com/shoroi/align-n-merge
Supervised learning-based adversarial attack detection methods rely on a large number of labeled data and suffer significant performance degradation when applying the trained model to new domains. In this paper, we propose a self-supervised representation learning framework for the adversarial attack detection task to address this drawback. Firstly, we map the pixels of augmented input images into an embedding space. Then, we employ the prototype-wise contrastive estimation loss to cluster prototypes as latent variables. Additionally, drawing inspiration from the concept of memory banks, we introduce a discrimination bank to distinguish and learn representations for each individual instance that shares the same or a similar prototype, establishing a connection between instances and their associated prototypes. We propose a parallel axial-attention (PAA)-based encoder to facilitate the training process by parallel training over height- and width-axis of attention maps. Experimental results show that, compared to various benchmark self-supervised vision learning models and supervised adversarial attack detection methods, the proposed model achieves state-of-the-art performance on the adversarial attack detection task across a wide range of images.
Retrieval-augmented Large Language Models (LLMs) have reshaped traditional query-answering systems, offering unparalleled user experiences. However, existing retrieval techniques often struggle to handle multi-modal query contexts. In this paper, we present an interactive Multi-modal Query Answering (MQA) system, empowered by our newly developed multi-modal retrieval framework and navigation graph index, integrated with cutting-edge LLMs. It comprises five core components: Data Preprocessing, Vector Representation, Index Construction, Query Execution, and Answer Generation, all orchestrated by a dedicated coordinator to ensure smooth data flow from input to answer generation. One notable aspect of MQA is its utilization of contrastive learning to assess the significance of different modalities, facilitating precise measurement of multi-modal information similarity. Furthermore, the system achieves efficient retrieval through our advanced navigation graph index, refined using computational pruning techniques. Another highlight of our system is its pluggable processing framework, allowing seamless integration of embedding models, graph indexes, and LLMs. This flexibility provides users diverse options for gaining insights from their multi-modal knowledge base. A preliminary video introduction of MQA is available at //youtu.be/xvUuo2ZIqWk.
Transformer architectures have facilitated the development of large-scale and general-purpose sequence models for prediction tasks in natural language processing and computer vision, e.g., GPT-3 and Swin Transformer. Although originally designed for prediction problems, it is natural to inquire about their suitability for sequential decision-making and reinforcement learning problems, which are typically beset by long-standing issues involving sample efficiency, credit assignment, and partial observability. In recent years, sequence models, especially the Transformer, have attracted increasing interest in the RL communities, spawning numerous approaches with notable effectiveness and generalizability. This survey presents a comprehensive overview of recent works aimed at solving sequential decision-making tasks with sequence models such as the Transformer, by discussing the connection between sequential decision-making and sequence modeling, and categorizing them based on the way they utilize the Transformer. Moreover, this paper puts forth various potential avenues for future research intending to improve the effectiveness of large sequence models for sequential decision-making, encompassing theoretical foundations, network architectures, algorithms, and efficient training systems. As this article has been accepted by the Frontiers of Computer Science, here is an early version, and the most up-to-date version can be found at //journal.hep.com.cn/fcs/EN/10.1007/s11704-023-2689-5
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.