亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We investigate a class of parametric elliptic eigenvalue problems with homogeneous essential boundary conditions where the coefficients (and hence the solution $u$) may depend on a parameter $y$. For the efficient approximate evaluation of parameter sensitivities of the first eigenpairs on the entire parameter space we propose and analyse Gevrey class and analytic regularity of the solution with respect to the parameters. This is made possible by a novel proof technique which we introduce and demonstrate in this paper. Our regularity result has immediate implications for convergence of various numerical schemes for parametric elliptic eigenvalue problems, in particular, for elliptic eigenvalue problems with infinitely many parameters arising from elliptic differential operators with random coefficients.

相關內容

Various methods have emerged for conducting mediation analyses with multiple correlated mediators, each with distinct strengths and limitations. However, a comparative evaluation of these methods is lacking, providing the motivation for this paper. This study examines six mediation analysis methods for multiple correlated mediators that provide insights to the contributors for health disparities. We assessed the performance of each method in identifying joint or path-specific mediation effects in the context of binary outcome variables varying mediator types and levels of residual correlation between mediators. Through comprehensive simulations, the performance of six methods in estimating joint and/or path-specific mediation effects was assessed rigorously using a variety of metrics including bias, mean squared error, coverage and width of the 95$\%$ confidence intervals. Subsequently, these methods were applied to the REasons for Geographic And Racial Differences in Stroke (REGARDS) study, where differing conclusions were obtained depending on the mediation method employed. This evaluation provides valuable guidance for researchers grappling with complex multi-mediator scenarios, enabling them to select an optimal mediation method for their research question and dataset.

Structural identifiability is an important property of parametric ODE models. When conducting an experiment and inferring the parameter value from the time-series data, we want to know if the value is globally, locally, or non-identifiable. Global identifiability of the parameter indicates that there exists only one possible solution to the inference problem, local identifiability suggests that there could be several (but finitely many) possibilities, while non-identifiability implies that there are infinitely many possibilities for the value. Having this information is useful since, one would, for example, only perform inferences for the parameters which are identifiable. Given the current significance and widespread research conducted in this area, we decided to create a database of linear compartment models and their identifiability results. This facilitates the process of checking theorems and conjectures and drawing conclusions on identifiability. By only storing models up to symmetries and isomorphisms, we optimize memory efficiency and reduce query time. We conclude by applying our database to real problems. We tested a conjecture about deleting one leak of the model states in the paper 'Linear compartmental models: Input-output equations and operations that preserve identifiability' by E. Gross et al., and managed to produce a counterexample. We also compute some interesting statistics related to the identifiability of linear compartment model parameters.

This work presents a methodology to predict a near-optimal spacing function, which defines the element sizes, suitable to perform steady RANS turbulent viscous flow simulations. The strategy aims at utilising existing high fidelity simulations to compute a target spacing function and train an artificial neural network (ANN) to predict the spacing function for new simulations, either unseen operating conditions or unseen geometric configurations. Several challenges induced by the use of highly stretched elements are addressed. The final goal is to substantially reduce the time and human expertise that is nowadays required to produce suitable meshes for simulations. Numerical examples involving turbulent compressible flows in two dimensions are used to demonstrate the ability of the trained ANN to predict a suitable spacing function. The influence of the NN architecture and the size of the training dataset are discussed. Finally, the suitability of the predicted meshes to perform simulations is investigated.

The emergence of cooperative behavior, despite natural selection favoring rational self-interest, presents a significant evolutionary puzzle. Evolutionary game theory elucidates why cooperative behavior can be advantageous for survival. However, the impact of non-uniformity in the frequency of actions, particularly when actions are altered in the short term, has received little scholarly attention. To demonstrate the relationship between the non-uniformity in the frequency of actions and the evolution of cooperation, we conducted multi-agent simulations of evolutionary games. In our model, each agent performs actions in a chain-reaction, resulting in a non-uniform distribution of the number of actions. To achieve a variety of non-uniform action frequency, we introduced two types of chain-reaction rules: one where an agent's actions trigger subsequent actions, and another where an agent's actions depend on the actions of others. Our results revealed that cooperation evolves more effectively in scenarios with even slight non-uniformity in action frequency compared to completely uniform cases. In addition, scenarios where agents' actions are primarily triggered by their own previous actions more effectively support cooperation, whereas those triggered by others' actions are less effective. This implies that a few highly active individuals contribute positively to cooperation, while the tendency to follow others' actions can hinder it.

We introduce an algorithm that simplifies the construction of efficient estimators, making them accessible to a broader audience. 'Dimple' takes as input computer code representing a parameter of interest and outputs an efficient estimator. Unlike standard approaches, it does not require users to derive a functional derivative known as the efficient influence function. Dimple avoids this task by applying automatic differentiation to the statistical functional of interest. Doing so requires expressing this functional as a composition of primitives satisfying a novel differentiability condition. Dimple also uses this composition to determine the nuisances it must estimate. In software, primitives can be implemented independently of one another and reused across different estimation problems. We provide a proof-of-concept Python implementation and showcase through examples how it allows users to go from parameter specification to efficient estimation with just a few lines of code.

Identifying low-dimensional structure in high-dimensional probability measures is an essential pre-processing step for efficient sampling. We introduce a method for identifying and approximating a target measure $\pi$ as a perturbation of a given reference measure $\mu$ along a few significant directions of $\mathbb{R}^{d}$. The reference measure can be a Gaussian or a nonlinear transformation of a Gaussian, as commonly arising in generative modeling. Our method extends prior work on minimizing majorizations of the Kullback--Leibler divergence to identify optimal approximations within this class of measures. Our main contribution unveils a connection between the \emph{dimensional} logarithmic Sobolev inequality (LSI) and approximations with this ansatz. Specifically, when the target and reference are both Gaussian, we show that minimizing the dimensional LSI is equivalent to minimizing the KL divergence restricted to this ansatz. For general non-Gaussian measures, the dimensional LSI produces majorants that uniformly improve on previous majorants for gradient-based dimension reduction. We further demonstrate the applicability of this analysis to the squared Hellinger distance, where analogous reasoning shows that the dimensional Poincar\'e inequality offers improved bounds.

Mechanical issues of noncircular and asymmetrical tunnelling can be estimated using complex variable method with suitable conformal mapping. Exsiting solution schemes of conformal mapping for noncircular tunnel generally need iteration or optimization strategy, and are thereby mathematically complicated. This paper proposes a new bidirectional conformal mapping for deep and shallow tunnels of noncircular and asymmetrical shapes by incorporating Charge Simulation Method. The solution scheme of this new bidirectional conformal mapping only involves a pair of linear systems, and is therefore logically straight-forward, computationally efficient, and practically easy in coding. New numerical strategies are developed to deal with possible sharp corners of cavity by small arc simulation and densified collocation points. Several numerical examples are presented to illustrate the geometrical usage of the new bidirectional conformal mapping. Furthermore, the new bidirectional conformal mapping is embedded into two complex variable solutions of noncircular and asymmetrical shallow tunnelling in gravitational geomaterial with reasonable far-field displacement. The respective result comparisons with finite element solution and exsiting analytical solution show good agreements, indicating the feasible mechanical usage of the new bidirectional conformal mapping.

We present a method to generate contingency tables that follow loglinear models with prescribed marginal probabilities and dependence structures. We make use of (loglinear) Poisson regression, where the dependence structures, described using odds ratios, are implemented using an offset term. We apply this methodology to carry out simulation studies in the context of population size estimation using dual system and triple system estimators, popular in official statistics. These estimators use contingency tables that summarise the counts of elements enumerated or captured within lists that are linked. The simulation is used to investigate these estimators in the situation that the model assumptions are fulfilled, and the situation that the model assumptions are violated.

Given the damages from earthquakes, seismic isolation of critical infrastructure is vital to mitigate losses due to seismic events. A promising approach for seismic isolation systems is metamaterials-based wave barriers. Metamaterials -- engineered composites -- manipulate the propagation and attenuation of seismic waves. Borrowing ideas from phononic and sonic crystals, the central goal of a metamaterials-based wave barrier is to create band gaps that cover the frequencies of seismic waves. The two quantities of interest (QoIs) that characterize band-gaps are the first-frequency cutoff and the band-gap's width. Researchers often use analytical (band-gap analysis), experimental (shake table tests), and statistical (global variance) approaches to tailor the QoIs. However, these approaches are expensive and compute-intensive. So, a pressing need exists for alternative easy-to-use methods to quantify the correlation between input (design) parameters and QoIs. To quantify such a correlation, in this paper, we will use Shapley values, a technique from the cooperative game theory. In addition, we will develop machine learning models that can predict the QoIs for a given set of input (material and geometrical) parameters.

We use Stein characterisations to derive new moment-type estimators for the parameters of several truncated multivariate distributions in the i.i.d. case; we also derive the asymptotic properties of these estimators. Our examples include the truncated multivariate normal distribution and truncated products of independent univariate distributions. The estimators are explicit and therefore provide an interesting alternative to the maximum-likelihood estimator (MLE). The quality of these estimators is assessed through competitive simulation studies, in which we compare their behaviour to the performance of the MLE and the score matching approach.

北京阿比特科技有限公司