亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Assumption-based Argumentation (ABA) is advocated as a unifying formalism for various forms of non-monotonic reasoning, including logic programming. It allows capturing defeasible knowledge, subject to argumentative debate. While, in much existing work, ABA frameworks are given up-front, in this paper we focus on the problem of automating their learning from background knowledge and positive/negative examples. Unlike prior work, we newly frame the problem in terms of brave reasoning under stable extensions for ABA. We present a novel algorithm based on transformation rules (such as Rote Learning, Folding, Assumption Introduction and Fact Subsumption) and an implementation thereof that makes use of Answer Set Programming. Finally, we compare our technique to state-of-the-art ILP systems that learn defeasible knowledge.

相關內容

In-Context Learning (ICL) has significantly expanded the general-purpose nature of large language models, allowing them to adapt to novel tasks using merely the inputted context. This has motivated a series of papers that analyze tractable synthetic domains and postulate precise mechanisms that may underlie ICL. However, the use of relatively distinct setups that often lack a sequence modeling nature to them makes it unclear how general the reported insights from such studies are. Motivated by this, we propose a synthetic sequence modeling task that involves learning to simulate a finite mixture of Markov chains. As we show, models trained on this task reproduce most well-known results on ICL, hence offering a unified setting for studying the concept. Building on this setup, we demonstrate we can explain a model's behavior by decomposing it into four broad algorithms that combine a fuzzy retrieval vs. inference approach with either unigram or bigram statistics of the context. These algorithms engage in a competition dynamics to dominate model behavior, with the precise experimental conditions dictating which algorithm ends up superseding others: e.g., we find merely varying context size or amount of training yields (at times sharp) transitions between which algorithm dictates the model behavior, revealing a mechanism that explains the transient nature of ICL. In this sense, we argue ICL is best thought of as a mixture of different algorithms, each with its own peculiarities, instead of a monolithic capability. This also implies that making general claims about ICL that hold universally across all settings may be infeasible.

We establish that a non-Gaussian nonparametric regression model is asymptotically equivalent to a regression model with Gaussian noise. The approximation is in the sense of Le Cam's deficiency distance $\Delta $; the models are then asymptotically equivalent for all purposes of statistical decision with bounded loss. Our result concerns a sequence of independent but not identically distributed observations with each distribution in the same real-indexed exponential family. The canonical parameter is a value $f(t_i)$ of a regression function $f$ at a grid point $t_i$ (nonparametric GLM). When $f$ is in a H\"{o}lder ball with exponent $\beta >\frac 12 ,$ we establish global asymptotic equivalence to observations of a signal $\Gamma (f(t))$ in Gaussian white noise, where $\Gamma $ is related to a variance stabilizing transformation in the exponential family. The result is a regression analog of the recently established Gaussian approximation for the i.i.d. model. The proof is based on a functional version of the Hungarian construction for the partial sum process.

A near-field wideband beamforming scheme is investigated for reconfigurable intelligent surface (RIS) assisted multiple-input multiple-output (MIMO) systems, in which a deep learning-based end-to-end (E2E) optimization framework is proposed to maximize the system spectral efficiency. To deal with the near-field double beam split effect, the base station is equipped with frequency-dependent hybrid precoding architecture by introducing sub-connected true time delay (TTD) units, while two specific RIS architectures, namely true time delay-based RIS (TTD-RIS) and virtual subarray-based RIS (SA-RIS), are exploited to realize the frequency-dependent passive beamforming at the RIS. Furthermore, the efficient E2E beamforming models without explicit channel state information are proposed, which jointly exploits the uplink channel training module and the downlink wideband beamforming module. In the proposed network architecture of the E2E models, the classical communication signal processing methods, i.e., polarized filtering and sparsity transform, are leveraged to develop a signal-guided beamforming network. Numerical results show that the proposed E2E models have superior beamforming performance and robustness to conventional beamforming benchmarks. Furthermore, the tradeoff between the beamforming gain and the hardware complexity is investigated for different frequency-dependent RIS architectures, in which the TTD-RIS can achieve better spectral efficiency than the SA-RIS while requiring additional energy consumption and hardware cost.

Micro-Action Recognition (MAR) has gained increasing attention due to its crucial role as a form of non-verbal communication in social interactions, with promising potential for applications in human communication and emotion analysis. However, current approaches often overlook the inherent ambiguity in micro-actions, which arises from the wide category range and subtle visual differences between categories. This oversight hampers the accuracy of micro-action recognition. In this paper, we propose a novel Prototypical Calibrating Ambiguous Network (\textbf{PCAN}) to unleash and mitigate the ambiguity of MAR. \textbf{Firstly}, we employ a hierarchical action-tree to identify the ambiguous sample, categorizing them into distinct sets of ambiguous samples of false negatives and false positives, considering both body- and action-level categories. \textbf{Secondly}, we implement an ambiguous contrastive refinement module to calibrate these ambiguous samples by regulating the distance between ambiguous samples and their corresponding prototypes. This calibration process aims to pull false negative ($\mathbb{FN}$) samples closer to their respective prototypes and push false positive ($\mathbb{FP}$) samples apart from their affiliated prototypes. In addition, we propose a new prototypical diversity amplification loss to strengthen the model's capacity by amplifying the differences between different prototypes. \textbf{Finally}, we propose a prototype-guided rectification to rectify prediction by incorporating the representability of prototypes. Extensive experiments conducted on the benchmark dataset demonstrate the superior performance of our method compared to existing approaches. The code is available at //github.com/kunli-cs/PCAN.

Reward modeling is crucial for aligning large language models (LLMs) with human preferences, especially in reinforcement learning from human feedback (RLHF). However, current reward models mainly produce scalar scores and struggle to incorporate critiques in a natural language format. We hypothesize that predicting both critiques and the scalar reward would improve reward modeling ability. Motivated by this, we propose Critic-RM, a framework that improves reward models using self-generated critiques without extra supervision. Critic-RM employs a two-stage process: generating and filtering high-quality critiques, followed by joint fine-tuning on reward prediction and critique generation. Experiments across benchmarks show that Critic-RM improves reward modeling accuracy by 3.7%-7.3% compared to standard reward models and LLM judges, demonstrating strong performance and data efficiency. Additional studies further validate the effectiveness of generated critiques in rectifying flawed reasoning steps with 2.5%-3.2% gains in improving reasoning accuracy.

Model counting is a fundamental task that involves determining the number of satisfying assignments to a logical formula, typically in conjunctive normal form (CNF). While CNF model counting has received extensive attention over recent decades, interest in Pseudo-Boolean (PB) model counting is just emerging partly due to the greater flexibility of PB formulas. As such, we observed feature gaps in existing PB counters such as a lack of support for projected and incremental settings, which could hinder adoption. In this work, our main contribution is the introduction of the PB model counter PBCount2, the first exact PB model counter with support for projected and incremental model counting. Our counter, PBCount2, uses our Least Occurrence Weighted Min Degree (LOW-MD) computation ordering heuristic to support projected model counting and a cache mechanism to enable incremental model counting. In our evaluations, PBCount2 completed at least 1.40x the number of benchmarks of competing methods for projected model counting and at least 1.18x of competing methods in incremental model counting.

With the application of high-frequency communication and extremely large MIMO (XL-MIMO), the near-field effect has become increasingly apparent. The near-field channel estimation and position estimation problems both rely on the Angle of Arrival (AoA) and the Curvature of Arrival (CoA) estimation. However, in the near-field channel model, the coupling of AoA and CoA information poses a challenge to the estimation of the near-field channel. This paper proposes a Joint Autocorrelation and Cross-correlation (JAC) scheme to decouple AoA and CoA estimation. Based on the JAC scheme, we propose two specific near-field estimation algorithms, namely Inverse Sinc Function (JAC-ISF) and Gradient Descent (JAC-GD) algorithms. Finally, we analyzed the time complexity of the JAC scheme and the cramer-rao lower bound (CRLB) for near-field position estimation. The simulation experiment results show that the algorithm designed based on JAC scheme can solve the problem of coupled CoA and AoA information in near-field estimation, thereby improving the algorithm performance. The JAC-GD algorithm shows significant performance in channel estimation and position estimation at different SNRs, snapshot points, and communication distances compared to other algorithms. This indicates that the JAC-GD algorithm can achieve more accurate channel and position estimation results while saving time overhead.

Inductive reasoning - the process of inferring general rules from a small number of observations - is a fundamental aspect of human intelligence. Recent works suggest that large language models (LLMs) can engage in inductive reasoning by sampling multiple hypotheses about the rules and selecting the one that best explains the observations. However, due to the IID sampling, semantically redundant hypotheses are frequently generated, leading to significant wastage of compute. In this paper, we 1) demonstrate that increasing the temperature to enhance the diversity is limited due to text degeneration issue, and 2) propose a novel method to improve the diversity while maintaining text quality. We first analyze the effect of increasing the temperature parameter, which is regarded as the LLM's diversity control, on IID hypotheses. Our analysis shows that as temperature rises, diversity and accuracy of hypotheses increase up to a certain point, but this trend saturates due to text degeneration. To generate hypotheses that are more semantically diverse and of higher quality, we propose a novel approach inspired by human inductive reasoning, which we call Mixture of Concepts (MoC). When applied to several inductive reasoning benchmarks, MoC demonstrated significant performance improvements compared to standard IID sampling and other approaches.

Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司