亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We develop easily accessible quantities for bounding the almost sure exponential convergence rate of push-sum algorithms. We analyze the scenario of i.i.d. synchronous gossip, every agent communicating towards its single target at every step. Multiple bounding expressions are developed depending on the generality of the setup, all functions of the spectrum of the network. While the most general bound awaits further improvement, with more symmetries, close bounds can be established, as demonstrated by numerical simulations.

相關內容

We present difference schemes for stochastic transport equations with low-regularity velocity fields. We establish $L^2$ stability and convergence of the difference approximations under conditions that are less strict than those required for deterministic transport equations. The $L^2$ estimate, crucial for the analysis, is obtained through a discrete duality argument and a comprehensive examination of a class of backward parabolic difference schemes.

Stochastic optimization methods have been hugely successful in making large-scale optimization problems feasible when computing the full gradient is computationally prohibitive. Using the theory of modified equations for numerical integrators, we propose a class of stochastic differential equations that approximate the dynamics of general stochastic optimization methods more closely than the original gradient flow. Analyzing a modified stochastic differential equation can reveal qualitative insights about the associated optimization method. Here, we study mean-square stability of the modified equation in the case of stochastic coordinate descent.

We study matrix sensing, which is the problem of reconstructing a low-rank matrix from a few linear measurements. It can be formulated as an overparameterized regression problem, which can be solved by factorized gradient descent when starting from a small random initialization. Linear neural networks, and in particular matrix sensing by factorized gradient descent, serve as prototypical models of non-convex problems in modern machine learning, where complex phenomena can be disentangled and studied in detail. Much research has been devoted to studying special cases of asymmetric matrix sensing, such as asymmetric matrix factorization and symmetric positive semi-definite matrix sensing. Our key contribution is introducing a continuous differential equation that we call the $\textit{perturbed gradient flow}$. We prove that the perturbed gradient flow converges quickly to the true target matrix whenever the perturbation is sufficiently bounded. The dynamics of gradient descent for matrix sensing can be reduced to this formulation, yielding a novel proof of asymmetric matrix sensing with factorized gradient descent. Compared to directly analyzing the dynamics of gradient descent, the continuous formulation allows bounding key quantities by considering their derivatives, often simplifying the proofs. We believe the general proof technique may prove useful in other settings as well.

The Multilevel Monte Carlo (MLMC) approach usually works well when estimating the expected value of a quantity which is a Lipschitz function of intermediate quantities, but if it is a discontinuous function it can lead to a much slower decay in the variance of the MLMC correction. This article reviews the literature on techniques which can be used to overcome this challenge in a variety of different contexts, and discusses recent developments using either a branching diffusion or adaptive sampling.

We aim to establish Bowen's equations for upper capacity invariance pressure and Pesin-Pitskel invariance pressure of discrete-time control systems. We first introduce a new invariance pressure called induced invariance pressure on partitions that specializes the upper capacity invariance pressure on partitions, and then show that the two types of invariance pressures are related by a Bowen's equation. Besides, to establish Bowen's equation for Pesin-Pitskel invariance pressure on partitions we also introduce a new notion called BS invariance dimension on subsets. Moreover, a variational principle for BS invariance dimension on subsets is established.

Multivariate imputation by chained equations (MICE) is one of the most popular approaches to address missing values in a data set. This approach requires specifying a univariate imputation model for every variable under imputation. The specification of which predictors should be included in these univariate imputation models can be a daunting task. Principal component analysis (PCA) can simplify this process by replacing all of the potential imputation model predictors with a few components summarizing their variance. In this article, we extend the use of PCA with MICE to include a supervised aspect whereby information from the variables under imputation is incorporated into the principal component estimation. We conducted an extensive simulation study to assess the statistical properties of MICE with different versions of supervised dimensionality reduction and we compared them with the use of classical unsupervised PCA as a simpler dimensionality reduction technique.

In this paper, efficient alternating direction implicit (ADI) schemes are proposed to solve three-dimensional heat equations with irregular boundaries and interfaces. Starting from the well-known Douglas-Gunn ADI scheme, a modified ADI scheme is constructed to mitigate the issue of accuracy loss in solving problems with time-dependent boundary conditions. The unconditional stability of the new ADI scheme is also rigorously proven with the Fourier analysis. Then, by combining the ADI schemes with a 1D kernel-free boundary integral (KFBI) method, KFBI-ADI schemes are developed to solve the heat equation with irregular boundaries. In 1D sub-problems of the KFBI-ADI schemes, the KFBI discretization takes advantage of the Cartesian grid and preserves the structure of the coefficient matrix so that the fast Thomas algorithm can be applied to solve the linear system efficiently. Second-order accuracy and unconditional stability of the KFBI-ADI schemes are verified through several numerical tests for both the heat equation and a reaction-diffusion equation. For the Stefan problem, which is a free boundary problem of the heat equation, a level set method is incorporated into the ADI method to capture the time-dependent interface. Numerical examples for simulating 3D dendritic solidification phenomenons are also presented.

Determining the number of factors in high-dimensional factor modeling is essential but challenging, especially when the data are heavy-tailed. In this paper, we introduce a new estimator based on the spectral properties of Spearman sample correlation matrix under the high-dimensional setting, where both dimension and sample size tend to infinity proportionally. Our estimator is robust against heavy tails in either the common factors or idiosyncratic errors. The consistency of our estimator is established under mild conditions. Numerical experiments demonstrate the superiority of our estimator compared to existing methods.

One of the central quantities of probabilistic seismic risk assessment studies is the fragility curve, which represents the probability of failure of a mechanical structure conditional to a scalar measure derived from the seismic ground motion. Estimating such curves is a difficult task because for most structures of interest, few data are available. For this reason, a wide range of the methods of the literature rely on a parametric log-normal model. Bayesian approaches allow for efficient learning of the model parameters. However, the choice of the prior distribution has a non-negligible influence on the posterior distribution, and therefore on any resulting estimate. We propose a thorough study of this parametric Bayesian estimation problem when the data are binary (i.e. data indicate the state of the structure, failure or non-failure). Using the reference prior theory as a support, we suggest an objective approach for the prior choice. This approach leads to the Jeffreys' prior which is explicitly derived for this problem for the first time. The posterior distribution is proven to be proper (i.e. it integrates to unity) with Jeffreys' prior and improper with some classical priors from the literature. The posterior distribution with Jeffreys' prior is also shown to vanish at the boundaries of the parameter domain, so sampling of the posterior distribution of the parameters does not produce anomalously small or large values, which in turn does not produce degenerate fragility curves such as unit step functions. The numerical results on three different case studies illustrate these theoretical predictions.

A standard approach to solve ordinary differential equations, when they describe dynamical systems, is to adopt a Runge-Kutta or related scheme. Such schemes, however, are not applicable to the large class of equations which do not constitute dynamical systems. In several physical systems, we encounter integro-differential equations with memory terms where the time derivative of a state variable at a given time depends on all past states of the system. Secondly, there are equations whose solutions do not have well-defined Taylor series expansion. The Maxey-Riley-Gatignol equation, which describes the dynamics of an inertial particle in nonuniform and unsteady flow, displays both challenges. We use it as a test bed to address the questions we raise, but our method may be applied to all equations of this class. We show that the Maxey-Riley-Gatignol equation can be embedded into an extended Markovian system which is constructed by introducing a new dynamical co-evolving state variable that encodes memory of past states. We develop a Runge-Kutta algorithm for the resultant Markovian system. The form of the kernels involved in deriving the Runge-Kutta scheme necessitates the use of an expansion in powers of $t^{1/2}$. Our approach naturally inherits the benefits of standard time-integrators, namely a constant memory storage cost, a linear growth of operational effort with simulation time, and the ability to restart a simulation with the final state as the new initial condition.

北京阿比特科技有限公司