The goal of this work is to give precise bounds on the counting complexity of a family of generalized coloring problems (list homomorphisms) on bounded-treewidth graphs. Given graphs $G$, $H$, and lists $L(v)\subseteq V(H)$ for every $v\in V(G)$, a {\em list homomorphism} is a function $f:V(G)\to V(H)$ that preserves the edges (i.e., $uv\in E(G)$ implies $f(u)f(v)\in E(H)$) and respects the lists (i.e., $f(v)\in L(v))$. Standard techniques show that if $G$ is given with a tree decomposition of width $t$, then the number of list homomorphisms can be counted in time $|V(H)|^t\cdot n^{\mathcal{O}(1)}$. Our main result is determining, for every fixed graph $H$, how much the base $|V(H)|$ in the running time can be improved. For a connected graph $H$ we define $\operatorname{irr}(H)$ the following way: if $H$ has a loop or is nonbipartite, then $\operatorname{irr}(H)$ is the maximum size of a set $S\subseteq V(H)$ where any two vertices have different neighborhoods; if $H$ is bipartite, then $\operatorname{irr}(H)$ is the maximum size of such a set that is fully in one of the bipartition classes. For disconnected $H$, we define $\operatorname{irr}(H)$ as the maximum of $\operatorname{irr}(C)$ over every connected component $C$ of $H$. We show that, for every fixed graph $H$, the number of list homomorphisms from $(G,L)$ to $H$ * can be counted in time $\operatorname{irr}(H)^t\cdot n^{\mathcal{O}(1)}$ if a tree decomposition of $G$ having width at most $t$ is given in the input, and * cannot be counted in time $(\operatorname{irr}(H)-\epsilon)^t\cdot n^{\mathcal{O}(1)}$ for any $\epsilon>0$, even if a tree decomposition of $G$ having width at most $t$ is given in the input, unless the #SETH fails. Thereby we give a precise and complete complexity classification featuring matching upper and lower bounds for all target graphs with or without loops.
Unrefinable partitions are a subset of partitions into distinct parts which satisfy an additional unrefinability property. More precisely, no parts of such partitions can be written as the sum of different integers which are not parts. We address in this paper the algorithmic aspects related to unrefinable partitions, such as testing whether a given partition is unrefinable or not and enumerating all the partitions whose sum is a given number. We design two algorithms to solve the two mentioned problems and we discuss their complexity.
For a graph $G$, $\chi(G)$ $(\omega(G))$ denote its chromatic (clique) number. A $P_5$ is the chordless path on five vertices, and a $4$-$wheel$ is the graph consisting of a chordless cycle on four vertices $C_4$ plus an additional vertex adjacent to all the vertices of the $C_4$. In this paper, we show that every ($P_5$, $4$-wheel)-free graph $G$ satisfies $\chi(G)\leq \frac{3}{2}\omega(G)$. Moreover, this bound is almost tight. That is, there is a class of ($P_5$, $4$-wheel)-free graphs $\cal L$ such that every graph $H\in \cal L$ satisfies $\chi(H)\geq\frac{10}{7}\omega(H)$. This generalizes/improves several previously known results in the literature.
In 1943, Hadwiger conjectured that every graph with no $K_t$ minor is $(t-1)$-colorable for every $t\ge 1$. In the 1980s, Kostochka and Thomason independently proved that every graph with no $K_t$ minor has average degree $O(t\sqrt{\log t})$ and hence is $O(t\sqrt{\log t})$-colorable. Recently, Norin, Song and the second author showed that every graph with no $K_t$ minor is $O(t(\log t)^{\beta})$-colorable for every $\beta > 1/4$, making the first improvement on the order of magnitude of the $O(t\sqrt{\log t})$ bound. The first main result of this paper is that every graph with no $K_t$ minor is $O(t\log\log t)$-colorable. This is a corollary of our main technical result that the chromatic number of a $K_t$-minor-free graph is bounded by $O(t(1+f(G,t)))$ where $f(G,t)$ is the maximum of $\frac{\chi(H)}{a}$ over all $a\ge \frac{t}{\sqrt{\log t}}$ and $K_a$-minor-free subgraphs $H$ of $G$ that are small (i.e. $O(a\log^4 a)$ vertices). This has a number of interesting corollaries. First as mentioned, using the current best-known bounds on coloring small $K_t$-minor-free graphs, we show that $K_t$-minor-free graphs are $O(t\log\log t)$-colorable. Second, it shows that proving Linear Hadwiger's Conjecture (that $K_t$-minor-free graphs are $O(t)$-colorable) reduces to proving it for small graphs. Third, we prove that $K_t$-minor-free graphs with clique number at most $\sqrt{\log t}/ (\log \log t)^2$ are $O(t)$-colorable. This implies our final corollary that Linear Hadwiger's Conjecture holds for $K_r$-free graphs for every fixed $r$. One key to proving the main theorem is a new standalone result that every $K_t$-minor-free graph of average degree $d=\Omega(t)$ has a subgraph on $O(t \log^3 t)$ vertices with average degree $\Omega(d)$.
The reliability of a Boolean Conjunctive Query (CQ) over a tuple-independent probabilistic database is the probability that the CQ is satisfied when the tuples of the database are sampled one by one, independently, with their associated probability. For queries without self-joins (repeated relation symbols), the data complexity of this problem is fully characterized by a known dichotomy: reliability can be computed in polynomial time for hierarchical queries, and is #P-hard for non-hierarchical queries. Inspired by this dichotomy, we investigate a fundamental counting problem for CQs without self-joins: how many sets of facts from the input database satisfy the query? This is equivalent to the uniform case of the query reliability problem, where the probability of every tuple is required to be 1/2. Of course, for hierarchical queries, uniform reliability is solvable in polynomial time, like the reliability problem. We show that being hierarchical is also necessary for this tractability (under conventional complexity assumptions). In fact, we establish a generalization of the dichotomy that covers every restricted case of reliability in which the probabilities of tuples are determined by their relation.
Given a graph, the shortest-path problem requires finding a sequence of edges with minimum cumulative length that connects a source vertex to a target vertex. We consider a generalization of this classical problem in which the position of each vertex in the graph is a continuous decision variable, constrained to lie in a corresponding convex set. The length of an edge is then defined as a convex function of the positions of the vertices it connects. Problems of this form arise naturally in motion planning of autonomous vehicles, robot navigation, and even optimal control of hybrid dynamical systems. The price for such a wide applicability is the complexity of this problem, which is easily seen to be NP-hard. Our main contribution is a strong mixed-integer convex formulation based on perspective functions. This formulation has a very tight convex relaxation and makes it possible to efficiently find globally-optimal paths in large graphs and in high-dimensional spaces.
Permutation polynomials over finite fields are an interesting and constantly active research subject of study for many years. They have important applications in areas of mathematics and engineering. In recent years, permutation binomials and permutation trinomials attract people's interests due to their simple algebraic forms. By reversely using Tu's method for the characterization of permutation polynomials with exponents of Niho type, we construct a class of permutation trinomials with coefficients 1 in this paper. As applications, two conjectures of [19] and a conjecture of [13] are all special cases of our result. To our knowledge, the construction method of permutation polynomials by polar decomposition in this paper is new. Moreover, we prove that in new class of permutation trinomials, there exists a permutation polynomial which is EA-inequivalent to known permutation polynomials for all m greater than or equal to 2. Also we give the explicit compositional inverses of the new permutation trinomials for a special case.
We study the problem of identifying the source of a stochastic diffusion process spreading on a graph based on the arrival times of the diffusion at a few queried nodes. In a graph $G=(V,E)$, an unknown source node $v^* \in V$ is drawn uniformly at random, and unknown edge weights $w(e)$ for $e\in E$, representing the propagation delays along the edges, are drawn independently from a Gaussian distribution of mean $1$ and variance $\sigma^2$. An algorithm then attempts to identify $v^*$ by querying nodes $q \in V$ and being told the length of the shortest path between $q$ and $v^*$ in graph $G$ weighted by $w$. We consider two settings: non-adaptive, in which all query nodes must be decided in advance, and adaptive, in which each query can depend on the results of the previous ones. Both settings are motivated by an application of the problem to epidemic processes (where the source is called patient zero), which we discuss in detail. We characterize the query complexity when $G$ is an $n$-node path. In the non-adaptive setting, $\Theta(n\sigma^2)$ queries are needed for $\sigma^2 \leq 1$, and $\Theta(n)$ for $\sigma^2 \geq 1$. In the adaptive setting, somewhat surprisingly, only $\Theta(\log\log_{1/\sigma}n)$ are needed when $\sigma^2 \leq 1/2$, and $\Theta(\log \log n)+O_\sigma(1)$ when $\sigma^2 \geq 1/2$. This is the first mathematical study of source identification with time queries in a non-deterministic diffusion process.
Let $|\cdot|:\mathbb{R}^d \to [0,\infty) $ be a $1$-homogeneous continuous map and let $\mathcal{T}=\mathbb{R}^l$ or $\mathcal{T}=\mathbb{Z}^l$ with $d,l$ positive integers. For a given $\mathbb{R}^d$-valued random field (rf) $Z(t),t\in \mathcal{T}$, which satisfies $\mathbb{E}\{ |Z(t)|^\alpha\} \in [0,\infty)$ for all $t\in \mathcal{T}$ and some $\alpha>0$ we define a class of rf's $\mathcal{K}^+_\alpha[Z]$ related to $Z$ via certain functional identities. In the case $\mathcal{T}=\mathbb{R}^l$ the elements of $\mathcal{K}^+_\alpha[Z]$ are assumed to be quadrant stochastically continuous. If $B^h Z \in \mathcal{K}^+_\alpha[Z]$ for any $h\in \mathcal{T}$ with $B^h Z(\cdot)= Z(\cdot -h), h\in \mathcal{T}$, we call $\mathcal{K}^+_\alpha[Z]$ shift-invariant. This paper is concerned with the basic properties of shift-invariant $\mathcal{K}^+_\alpha[Z]$'s. In particular, we discuss functional equations that characterise the shift-invariance and relate it with spectral tail and tail rf's introduced in this article for our general settings. Further, we investigate the class of universal maps $\mathbb{U}$, which is of particular interest for shift-representations. Two applications of our findings concern max-stable rf's and their extremal indices.
This paper deals with a special type of Lyapunov functions, namely the solution of Zubov's equation. Such a function can be used to characterize the domain of attraction for systems of ordinary differential equations. We derive and prove an integral form solution to Zubov's equation. For numerical computation, we develop two data-driven methods. One is based on the integration of an augmented system of differential equations; and the other one is based on deep learning. The former is effective for systems with a relatively low state space dimension and the latter is developed for high dimensional problems. The deep learning method is applied to a New England 10-generator power system model. We prove that a neural network approximation exists for the Lyapunov function of power systems such that the approximation error is a cubic polynomial of the number of generators. The error convergence rate as a function of n, the number of neurons, is proved.
Let $Q_{n}^{r}$ be the graph with vertex set $\{-1,1\}^{n}$ in which two vertices are joined if their Hamming distance is at most $r$. The edge-isoperimetric problem for $Q_{n}^{r}$ is that: For every $(n,r,M)$ such that $1\le r\le n$ and $1\le M\le2^{n}$, determine the minimum edge-boundary size of a subset of vertices of $Q_{n}^{r}$ with a given size $M$. In this paper, we apply two different approaches to prove bounds for this problem. The first approach is a linear programming approach and the second is a probabilistic approach. Our bound derived by the first approach generalizes the tight bound for $M=2^{n-1}$ derived by Kahn, Kalai, and Linial in 1989. Moreover, our bound is also tight for $M=2^{n-2}$ and $r\le\frac{n}{2}-1$. Our bounds derived by the second approach are expressed in terms of the \emph{noise stability}, and they are shown to be asymptotically tight as $n\to\infty$ when $r=2\lfloor\frac{\beta n}{2}\rfloor+1$ and $M=\lfloor\alpha2^{n}\rfloor$ for fixed $\alpha,\beta\in(0,1)$, and is tight up to a factor $2$ when $r=2\lfloor\frac{\beta n}{2}\rfloor$ and $M=\lfloor\alpha2^{n}\rfloor$. In fact, the edge-isoperimetric problem is equivalent to a ball-noise stability problem which is a variant of the traditional (i.i.d.-) noise stability problem. Our results can be interpreted as bounds for the ball-noise stability problem.