亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents a user-driven approach for synthesizing specific target voices based on user feedback rather than reference recordings, which is particularly beneficial for speech-impaired individuals who want to recreate their lost voices but lack prior recordings. Our method leverages the neural analysis and synthesis framework to construct a latent speaker embedding space. Within this latent space, a human-in-the-loop search algorithm guides the voice generation process. Users participate in a series of straightforward listening-and-comparison tasks, providing feedback that iteratively refines the synthesized voice to match their desired target. Both computer simulations and real-world user studies demonstrate that the proposed approach can effectively approximate target voices. Moreover, by analyzing the mel-spectrogram generator's Jacobians, we identify a set of meaningful voice editing directions within the latent space. These directions enable users to further fine-tune specific attributes of the generated voice, including the pitch level, pitch range, volume, vocal tension, nasality, and tone color. Audio samples are available at //myspeechprojects.github.io/voicedesign/.

相關內容

This paper presents a semantic-aware multi-modal resource allocation (SAMRA) for multi-task using multi-agent reinforcement learning (MARL), termed SAMRAMARL, utilizing in platoon systems where cellular vehicle-to-everything (C-V2X) communication is employed. The proposed approach leverages the semantic information to optimize the allocation of communication resources. By integrating a distributed multi-agent reinforcement learning (MARL) algorithm, SAMRAMARL enables autonomous decision-making for each vehicle, channel assignment optimization, power allocation, and semantic symbol length based on the contextual importance of the transmitted information. This semantic-awareness ensures that both vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications prioritize data that is critical for maintaining safe and efficient platoon operations. The framework also introduces a tailored quality of experience (QoE) metric for semantic communication, aiming to maximize QoE in V2V links while improving the success rate of semantic information transmission (SRS). Extensive simulations has demonstrated that SAMRAMARL outperforms existing methods, achieving significant gains in QoE and communication efficiency in C-V2X platooning scenarios.

Recently, there has been a significant upsurge of interest in leveraging large language models (LLMs) to assist scientific discovery. However, most LLMs only focus on general science, while they lack domain-specific knowledge, such as chemical molecules and amino acid sequences. To bridge these gaps, we introduce SciDFM, a mixture-of-experts LLM, which is trained from scratch and is able to conduct college-level scientific reasoning and understand molecules and amino acid sequences. We collect a large-scale training corpus containing numerous scientific papers and books from different disciplines as well as data from domain-specific databases. We further fine-tune the pre-trained model on lots of instruction data to improve performances on downstream benchmarks. From experiment results, we show that SciDFM achieves strong performance on general scientific benchmarks such as SciEval and SciQ, and it reaches a SOTA performance on domain-specific benchmarks among models of similar size. We further analyze the expert layers and show that the results of expert selection vary with data from different disciplines. To benefit the broader research community, we open-source SciDFM at //huggingface.co/OpenDFM/SciDFM-MoE-A5.6B-v1.0.

The increasing volume of data in relational databases and the expertise needed for writing SQL queries pose challenges for users to access and analyze data. Text-to-SQL (Text2SQL) solves the issues by utilizing natural language processing (NLP) techniques to convert natural language into SQL queries. With the development of Large Language Models (LLMs), a range of LLM-based Text2SQL methods have emerged. This survey provides a comprehensive review of LLMs in Text2SQL tasks. We review benchmark datasets, prompt engineering methods, fine-tuning methods, and base models in LLM-based Text2SQL methods. We provide insights in each part and discuss future directions in this field.

This paper introduces a modeling approach that employs multi-level global processing, encompassing both short-term frame-level and long-term sample-level feature scales. In the initial stage of shallow feature extraction, various scales are employed to extract multi-level features, including Mel-Frequency Cepstral Coefficients (MFCC) and pre-Fbank log energy spectrum. The construction of the identification network model involves considering the input two-dimensional temporal features from both frame and sample levels. Specifically, the model initially employs one-dimensional convolution-based Convolutional Long Short-Term Memory (ConvLSTM) to fuse spatiotemporal information and extract short-term frame-level features. Subsequently, bidirectional long Short-Term Memory (BiLSTM) is utilized to learn long-term sample-level sequential representations. The transformer encoder then performs cross-scale, multi-level processing on global frame-level and sample-level features, facilitating deep feature representation and fusion at both levels. Finally, recognition results are obtained through Softmax. Our method achieves an impressive 99.6% recognition accuracy on the CCNU_Mobile dataset, exhibiting a notable improvement of 2% to 12% compared to the baseline system. Additionally, we thoroughly investigate the transferability of our model, achieving an 87.9% accuracy in a classification task on a new dataset.

This letter presents a blockchain-based multi-path mobile access point (MAP) selection strategy for secure 5G vehicular ad-hoc networks (VANETs). The proposed method leverages blockchain technology for decentralized, transparent, and secure MAP selection, while the multi-path transmission strategy enhances network reliability and reduces communication delays. A trust-based attack detection mechanism is integrated to ensure network security. Simulation results demonstrate that the proposed algorithm reduces both handover frequency and average communication delay by over 80%, and successfully identifies and excludes more than 95% of Sybil nodes, ensuring reliable and secure communication in highly dynamic vehicular environments.

This paper delves into the continuous post-training optimization methods for small language models, and proposes a continuous post-training alignment data construction method for small language models. The core of this method is based on the data guidance of large models, optimizing the diversity and accuracy of alignment data. In addition, to verify the effectiveness of the methods in this paper, we used Qwen2-0.5B-Instruct model as the baseline model for small language models, using the alignment dataset constructed by our proposed method, we trained and compared several groups of experiments, including SFT (Supervised Fine Tuning) post-training experiment and KTO (Kahneman Tversky optimization) post-training experiment, as well as SFT-KTO two-stage post-training experiment and model weight fusion experiment. Finally, we evaluated and analyzed the performance of post-training models, and confirmed that the continuous post-training optimization method proposed by us can significantly improve the performance of small language models.

The sharp increase in data-related expenses has motivated research into condensing datasets while retaining the most informative features. Dataset distillation has thus recently come to the fore. This paradigm generates synthetic datasets that are representative enough to replace the original dataset in training a neural network. To avoid redundancy in these synthetic datasets, it is crucial that each element contains unique features and remains diverse from others during the synthesis stage. In this paper, we provide a thorough theoretical and empirical analysis of diversity within synthesized datasets. We argue that enhancing diversity can improve the parallelizable yet isolated synthesizing approach. Specifically, we introduce a novel method that employs dynamic and directed weight adjustment techniques to modulate the synthesis process, thereby maximizing the representativeness and diversity of each synthetic instance. Our method ensures that each batch of synthetic data mirrors the characteristics of a large, varying subset of the original dataset. Extensive experiments across multiple datasets, including CIFAR, Tiny-ImageNet, and ImageNet-1K, demonstrate the superior performance of our method, highlighting its effectiveness in producing diverse and representative synthetic datasets with minimal computational expense. Our code is available at //github.com/AngusDujw/Diversity-Driven-Synthesis.//github.com/AngusDujw/Diversity-Driven-Synthesis.

In this paper, a two-stage intelligent scheduler is proposed to minimize the packet-level delay jitter while guaranteeing delay bound. Firstly, Lyapunov technology is employed to transform the delay-violation constraint into a sequential slot-level queue stability problem. Secondly, a hierarchical scheme is proposed to solve the resource allocation between multiple base stations and users, where the multi-agent reinforcement learning (MARL) gives the user priority and the number of scheduled packets, while the underlying scheduler allocates the resource. Our proposed scheme achieves lower delay jitter and delay violation rate than the Round-Robin Earliest Deadline First algorithm and MARL with delay violation penalty.

Social relations are often used to improve recommendation quality when user-item interaction data is sparse in recommender systems. Most existing social recommendation models exploit pairwise relations to mine potential user preferences. However, real-life interactions among users are very complicated and user relations can be high-order. Hypergraph provides a natural way to model complex high-order relations, while its potentials for improving social recommendation are under-explored. In this paper, we fill this gap and propose a multi-channel hypergraph convolutional network to enhance social recommendation by leveraging high-order user relations. Technically, each channel in the network encodes a hypergraph that depicts a common high-order user relation pattern via hypergraph convolution. By aggregating the embeddings learned through multiple channels, we obtain comprehensive user representations to generate recommendation results. However, the aggregation operation might also obscure the inherent characteristics of different types of high-order connectivity information. To compensate for the aggregating loss, we innovatively integrate self-supervised learning into the training of the hypergraph convolutional network to regain the connectivity information with hierarchical mutual information maximization. The experimental results on multiple real-world datasets show that the proposed model outperforms the SOTA methods, and the ablation study verifies the effectiveness of the multi-channel setting and the self-supervised task. The implementation of our model is available via //github.com/Coder-Yu/RecQ.

This paper introduces an online model for object detection in videos designed to run in real-time on low-powered mobile and embedded devices. Our approach combines fast single-image object detection with convolutional long short term memory (LSTM) layers to create an interweaved recurrent-convolutional architecture. Additionally, we propose an efficient Bottleneck-LSTM layer that significantly reduces computational cost compared to regular LSTMs. Our network achieves temporal awareness by using Bottleneck-LSTMs to refine and propagate feature maps across frames. This approach is substantially faster than existing detection methods in video, outperforming the fastest single-frame models in model size and computational cost while attaining accuracy comparable to much more expensive single-frame models on the Imagenet VID 2015 dataset. Our model reaches a real-time inference speed of up to 15 FPS on a mobile CPU.

北京阿比特科技有限公司