亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper investigates the rational thinking capability of Large Language Models (LLMs) in multi-round argumentative debates by exploring the impact of fallacious arguments on their logical reasoning performance. More specifically, we present Logic Competence Measurement Benchmark (LOGICOM), a diagnostic benchmark to assess the robustness of LLMs against logical fallacies. LOGICOM involves two agents: a persuader and a debater engaging in a multi-round debate on a controversial topic, where the persuader tries to convince the debater of the correctness of its claim. First, LOGICOM assesses the potential of LLMs to change their opinions through reasoning. Then, it evaluates the debater's performance in logical reasoning by contrasting the scenario where the persuader employs logical fallacies against one where logical reasoning is used. We use this benchmark to evaluate the performance of GPT-3.5 and GPT-4 using a dataset containing controversial topics, claims, and reasons supporting them. Our findings indicate that both GPT-3.5 and GPT-4 can adjust their opinion through reasoning. However, when presented with logical fallacies, GPT-3.5 and GPT-4 are erroneously convinced 41% and 69% more often, respectively, compared to when logical reasoning is used. Finally, we introduce a new dataset containing over 5k pairs of logical vs. fallacious arguments. The source code and dataset of this work are made publicly available.

相關內容

This paper explores a hierarchical prompting mechanism for the hierarchical image classification (HIC) task. Different from prior HIC methods, our hierarchical prompting is the first to explicitly inject ancestor-class information as a tokenized hint that benefits the descendant-class discrimination. We think it well imitates human visual recognition, i.e., humans may use the ancestor class as a prompt to draw focus on the subtle differences among descendant classes. We model this prompting mechanism into a Transformer with Hierarchical Prompting (TransHP). TransHP consists of three steps: 1) learning a set of prompt tokens to represent the coarse (ancestor) classes, 2) on-the-fly predicting the coarse class of the input image at an intermediate block, and 3) injecting the prompt token of the predicted coarse class into the intermediate feature. Though the parameters of TransHP maintain the same for all input images, the injected coarse-class prompt conditions (modifies) the subsequent feature extraction and encourages a dynamic focus on relatively subtle differences among the descendant classes. Extensive experiments show that TransHP improves image classification on accuracy (e.g., improving ViT-B/16 by +2.83% ImageNet classification accuracy), training data efficiency (e.g., +12.69% improvement under 10% ImageNet training data), and model explainability. Moreover, TransHP also performs favorably against prior HIC methods, showing that TransHP well exploits the hierarchical information.

This paper presents an alternative approach to dehomogenisation of elastic Rank-N laminate structures based on the computer graphics discipline of phasor noise. The proposed methodology offers an improvement of existing methods, where high-quality single-scale designs can be obtained efficiently without the utilisation of any least-squares problem or pre-trained models. By utilising a continuous and periodic representation of the translation at each intermediate step, appropriate length-scale and thicknesses can be obtained. Numerical tests verifies the performance of the proposed methodology compared to state-of-the-art alternatives, and the dehomogenised designs achieve structural performance within a few percentages of the optimised homogenised solution. The nature of the phasor-based dehomogenisation is inherently mesh-independent and highly parallelisable, allowing for further efficient implementations and future extensions to 3D problems on unstructured meshes.

Data protection regulations, such as GDPR and CCPA, require websites and embedded third-parties, especially advertisers, to seek user consent before they can collect and process user data. Only when the users opt in, can these entities collect, process, and share user data. Websites typically incorporate Consent Management Platforms (CMPs), such as OneTrust and CookieBot, to solicit and convey user consent to the embedded advertisers, with the expectation that the consent will be respected. However, neither the websites nor the regulators currently have any mechanism to audit advertisers' compliance with the user consent, i.e., to determine if advertisers indeed do not collect, process, and share user data when the user opts out. In this paper, we propose an auditing framework that leverages advertisers' bidding behavior to empirically assess the violations of data protection regulations. Using our framework, we conduct a measurement study to evaluate four of the most widely deployed CMPs, i.e., Didomi, Quantcast, OneTrust, and CookieBot, as well as advertiser-offered opt-out controls, i.e., National Advertising Initiative's opt-out, under GDPR and CCPA. Our results indicate that in many cases user data is unfortunately still being collected, processed, and shared even when users opt-out. We also find that some CMPs are better than the others at conveying user consent and that several ad platforms ignore user consent. Our results also indicate that advertiser-offered opt-out are equally ineffective at protecting user privacy.

Being able to extract from scientific papers their main points, key insights, and other important information, referred to here as aspects, might facilitate the process of conducting a scientific literature review. Therefore, the aim of our research is to create a tool for automatic aspect extraction from Russian-language scientific texts of any domain. In this paper, we present a cross-domain dataset of scientific texts in Russian, annotated with such aspects as Task, Contribution, Method, and Conclusion, as well as a baseline algorithm for aspect extraction, based on the multilingual BERT model fine-tuned on our data. We show that there are some differences in aspect representation in different domains, but even though our model was trained on a limited number of scientific domains, it is still able to generalize to new domains, as was proved by cross-domain experiments. The code and the dataset are available at \url{//github.com/anna-marshalova/automatic-aspect-extraction-from-scientific-texts}.

This paper considers intelligent reflecting surface (IRS)-aided simultaneous wireless information and power transfer (SWIPT) in a multi-user multiple-input single-output (MISO) interference channel (IFC), where multiple transmitters (Txs) serve their corresponding receivers (Rxs) in a shared spectrum with the aid of IRSs. Our goal is to maximize the sum rate of the Rxs by jointly optimizing the transmit covariance matrices at the Txs, the phase shifts at the IRSs, and the resource allocation subject to the individual energy harvesting (EH) constraints at the Rxs. Towards this goal and based on the well-known power splitting (PS) and time switching (TS) receiver structures, we consider three practical transmission schemes, namely the IRS-aided hybrid TS-PS scheme, the IRS-aided time-division multiple access (TDMA) scheme, and the IRS-aided TDMA-D scheme. The latter two schemes differ in whether the Txs employ deterministic energy signals known to all the Rxs. Despite the non-convexity of the three optimization problems corresponding to the three transmission schemes, we develop computationally efficient algorithms to address them suboptimally, respectively, by capitalizing on the techniques of alternating optimization (AO) and successive convex approximation (SCA). Moreover, we conceive feasibility checking methods for these problems, based on which the initial points for the proposed algorithms are constructed. Simulation results demonstrate that our proposed IRS-aided schemes significantly outperform their counterparts without IRSs in terms of sum rate and maximum EH requirements that can be satisfied under various setups. In addition, the IRS-aided hybrid TS-PS scheme generally achieves the best sum rate performance among the three proposed IRS-aided schemes, and if not, increasing the number of IRS elements can always accomplish it.

In this paper, we establish a benchmark named HalluQA (Chinese Hallucination Question-Answering) to measure the hallucination phenomenon in Chinese large language models. HalluQA contains 450 meticulously designed adversarial questions, spanning multiple domains, and takes into account Chinese historical culture, customs, and social phenomena. During the construction of HalluQA, we consider two types of hallucinations: imitative falsehoods and factual errors, and we construct adversarial samples based on GLM-130B and ChatGPT. For evaluation, we design an automated evaluation method using GPT-4 to judge whether a model output is hallucinated. We conduct extensive experiments on 24 large language models, including ERNIE-Bot, Baichuan2, ChatGLM, Qwen, SparkDesk and etc. Out of the 24 models, 18 achieved non-hallucination rates lower than 50%. This indicates that HalluQA is highly challenging. We analyze the primary types of hallucinations in different types of models and their causes. Additionally, we discuss which types of hallucinations should be prioritized for different types of models.

This paper offers a comprehensive review of the research on Natural Language Generation (NLG) over the past two decades, especially in relation to data-to-text generation and text-to-text generation deep learning methods, as well as new applications of NLG technology. This survey aims to (a) give the latest synthesis of deep learning research on the NLG core tasks, as well as the architectures adopted in the field; (b) detail meticulously and comprehensively various NLG tasks and datasets, and draw attention to the challenges in NLG evaluation, focusing on different evaluation methods and their relationships; (c) highlight some future emphasis and relatively recent research issues that arise due to the increasing synergy between NLG and other artificial intelligence areas, such as computer vision, text and computational creativity.

Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.

Language model pre-training has proven to be useful in learning universal language representations. As a state-of-the-art language model pre-training model, BERT (Bidirectional Encoder Representations from Transformers) has achieved amazing results in many language understanding tasks. In this paper, we conduct exhaustive experiments to investigate different fine-tuning methods of BERT on text classification task and provide a general solution for BERT fine-tuning. Finally, the proposed solution obtains new state-of-the-art results on eight widely-studied text classification datasets.

This paper reports Deep LOGISMOS approach to 3D tumor segmentation by incorporating boundary information derived from deep contextual learning to LOGISMOS - layered optimal graph image segmentation of multiple objects and surfaces. Accurate and reliable tumor segmentation is essential to tumor growth analysis and treatment selection. A fully convolutional network (FCN), UNet, is first trained using three adjacent 2D patches centered at the tumor, providing contextual UNet segmentation and probability map for each 2D patch. The UNet segmentation is then refined by Gaussian Mixture Model (GMM) and morphological operations. The refined UNet segmentation is used to provide the initial shape boundary to build a segmentation graph. The cost for each node of the graph is determined by the UNet probability maps. Finally, a max-flow algorithm is employed to find the globally optimal solution thus obtaining the final segmentation. For evaluation, we applied the method to pancreatic tumor segmentation on a dataset of 51 CT scans, among which 30 scans were used for training and 21 for testing. With Deep LOGISMOS, DICE Similarity Coefficient (DSC) and Relative Volume Difference (RVD) reached 83.2+-7.8% and 18.6+-17.4% respectively, both are significantly improved (p<0.05) compared with contextual UNet and/or LOGISMOS alone.

北京阿比特科技有限公司