亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Efficient ObjectGoal navigation (ObjectNav) in novel environments requires an understanding of the spatial and semantic regularities in environment layouts. In this work, we present a straightforward method for learning these regularities by predicting the locations of unobserved objects from incomplete semantic maps. Our method differs from previous prediction-based navigation methods, such as frontier potential prediction or egocentric map completion, by directly predicting unseen targets while leveraging the global context from all previously explored areas. Our prediction model is lightweight and can be trained in a supervised manner using a relatively small amount of passively collected data. Once trained, the model can be incorporated into a modular pipeline for ObjectNav without the need for any reinforcement learning. We validate the effectiveness of our method on the HM3D and MP3D ObjectNav datasets. We find that it achieves the state-of-the-art on both datasets, despite not using any additional data for training.

相關內容

While leveraging additional training data is well established to improve adversarial robustness, it incurs the unavoidable cost of data collection and the heavy computation to train models. To mitigate the costs, we propose \textit{Guided Adversarial Training } (GAT), a novel adversarial training technique that exploits auxiliary tasks under a limited set of training data. Our approach extends single-task models into multi-task models during the min-max optimization of adversarial training, and drives the loss optimization with a regularization of the gradient curvature across multiple tasks. GAT leverages two types of auxiliary tasks: self-supervised tasks, where the labels are generated automatically, and domain-knowledge tasks, where human experts provide additional labels. Experimentally, under limited data, GAT increases the robust accuracy on CIFAR-10 up to four times (from 11% to 42% robust accuracy) and the robust AUC of CheXpert medical imaging dataset from 50\% to 83\%. On the full CIFAR-10 dataset, GAT outperforms eight state-of-the-art adversarial training strategies. Our large study across five datasets and six tasks demonstrates that task augmentation is an efficient alternative to data augmentation, and can be key to achieving both clean and robust performances.

Learning the graphical structure of Bayesian networks is key to describing data-generating mechanisms in many complex applications but poses considerable computational challenges. Observational data can only identify the equivalence class of the directed acyclic graph underlying a Bayesian network model, and a variety of methods exist to tackle the problem. Under certain assumptions, the popular PC algorithm can consistently recover the correct equivalence class by reverse-engineering the conditional independence (CI) relationships holding in the variable distribution. The dual PC algorithm is a novel scheme to carry out the CI tests within the PC algorithm by leveraging the inverse relationship between covariance and precision matrices. By exploiting block matrix inversions we can simultaneously perform tests on partial correlations of complementary (or dual) conditioning sets. The multiple CI tests of the dual PC algorithm proceed by first considering marginal and full-order CI relationships and progressively moving to central-order ones. Simulation studies show that the dual PC algorithm outperforms the classic PC algorithm both in terms of run time and in recovering the underlying network structure, even in the presence of deviations from Gaussianity. Additionally, we show that the dual PC algorithm applies for Gaussian copula models, and demonstrate its performance in that setting.

Open vocabulary models (e.g. CLIP) have shown strong performance on zero-shot classification through their ability generate embeddings for each class based on their (natural language) names. Prior work has focused on improving the accuracy of these models through prompt engineering or by incorporating a small amount of labeled downstream data (via finetuning). However, there has been little focus on improving the richness of the class names themselves, which can pose issues when class labels are coarsely-defined and uninformative. We propose Classification with Hierarchical Label Sets (or CHiLS), an alternative strategy for zero-shot classification specifically designed for datasets with implicit semantic hierarchies. CHiLS proceeds in three steps: (i) for each class, produce a set of subclasses, using either existing label hierarchies or by querying GPT-3; (ii) perform the standard zero-shot CLIP procedure as though these subclasses were the labels of interest; (iii) map the predicted subclass back to its parent to produce the final prediction. Across numerous datasets with underlying hierarchical structure, CHiLS leads to improved accuracy in situations both with and without ground-truth hierarchical information. CHiLS is simple to implement within existing CLIP pipelines and requires no additional training cost. Code is available at: //github.com/acmi-lab/CHILS.

Randomized ensemble classifiers (RECs), where one classifier is randomly selected during inference, have emerged as an attractive alternative to traditional ensembling methods for realizing adversarially robust classifiers with limited compute requirements. However, recent works have shown that existing methods for constructing RECs are more vulnerable than initially claimed, casting major doubts on their efficacy and prompting fundamental questions such as: "When are RECs useful?", "What are their limits?", and "How do we train them?". In this work, we first demystify RECs as we derive fundamental results regarding their theoretical limits, necessary and sufficient conditions for them to be useful, and more. Leveraging this new understanding, we propose a new boosting algorithm (BARRE) for training robust RECs, and empirically demonstrate its effectiveness at defending against strong $\ell_\infty$ norm-bounded adversaries across various network architectures and datasets.

Traditional static functional data analysis is facing new challenges due to streaming data, where data constantly flow in. A major challenge is that storing such an ever-increasing amount of data in memory is nearly impossible. In addition, existing inferential tools in online learning are mainly developed for finite-dimensional problems, while inference methods for functional data are focused on the batch learning setting. In this paper, we tackle these issues by developing functional stochastic gradient descent algorithms and proposing an online bootstrap resampling procedure to systematically study the inference problem for functional linear regression. In particular, the proposed estimation and inference procedures use only one pass over the data; thus they are easy to implement and suitable to the situation where data arrive in a streaming manner. Furthermore, we establish the convergence rate as well as the asymptotic distribution of the proposed estimator. Meanwhile, the proposed perturbed estimator from the bootstrap procedure is shown to enjoy the same theoretical properties, which provide the theoretical justification for our online inference tool. As far as we know, this is the first inference result on the functional linear regression model with streaming data. Simulation studies are conducted to investigate the finite-sample performance of the proposed procedure. An application is illustrated with the Beijing multi-site air-quality data.

Model-based methods have recently shown great potential for off-policy evaluation (OPE); offline trajectories induced by behavioral policies are fitted to transitions of Markov decision processes (MDPs), which are used to rollout simulated trajectories and estimate the performance of policies. Model-based OPE methods face two key challenges. First, as offline trajectories are usually fixed, they tend to cover limited state and action space. Second, the performance of model-based methods can be sensitive to the initialization of their parameters. In this work, we propose the variational latent branching model (VLBM) to learn the transition function of MDPs by formulating the environmental dynamics as a compact latent space, from which the next states and rewards are then sampled. Specifically, VLBM leverages and extends the variational inference framework with the recurrent state alignment (RSA), which is designed to capture as much information underlying the limited training data, by smoothing out the information flow between the variational (encoding) and generative (decoding) part of VLBM. Moreover, we also introduce the branching architecture to improve the model's robustness against randomly initialized model weights. The effectiveness of the VLBM is evaluated on the deep OPE (DOPE) benchmark, from which the training trajectories are designed to result in varied coverage of the state-action space. We show that the VLBM outperforms existing state-of-the-art OPE methods in general.

Knowledge graphs (KGs) have become effective knowledge resources in diverse applications, and knowledge graph embedding (KGE) methods have attracted increasing attention in recent years. However, it's still challenging for conventional KGE methods to handle unseen entities or relations during the model test. Much effort has been made in various fields of KGs to address this problem. In this paper, we use a set of general terminologies to unify these methods and refer to them as Knowledge Extrapolation. We comprehensively summarize these methods classified by our proposed taxonomy and describe their correlations. Next, we introduce the benchmarks and provide comparisons of these methods from aspects that are not reflected by the taxonomy. Finally, we suggest some potential directions for future research.

Many real-world multi-label prediction problems involve set-valued predictions that must satisfy specific requirements dictated by downstream usage. We focus on a typical scenario where such requirements, separately encoding \textit{value} and \textit{cost}, compete with each other. For instance, a hospital might expect a smart diagnosis system to capture as many severe, often co-morbid, diseases as possible (the value), while maintaining strict control over incorrect predictions (the cost). We present a general pipeline, dubbed as FavMac, to maximize the value while controlling the cost in such scenarios. FavMac can be combined with almost any multi-label classifier, affording distribution-free theoretical guarantees on cost control. Moreover, unlike prior works, FavMac can handle real-world large-scale applications via a carefully designed online update mechanism, which is of independent interest. Our methodological and theoretical contributions are supported by experiments on several healthcare tasks and synthetic datasets - FavMac furnishes higher value compared with several variants and baselines while maintaining strict cost control.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

Most previous event extraction studies have relied heavily on features derived from annotated event mentions, thus cannot be applied to new event types without annotation effort. In this work, we take a fresh look at event extraction and model it as a grounding problem. We design a transferable neural architecture, mapping event mentions and types jointly into a shared semantic space using structural and compositional neural networks, where the type of each event mention can be determined by the closest of all candidate types . By leveraging (1)~available manual annotations for a small set of existing event types and (2)~existing event ontologies, our framework applies to new event types without requiring additional annotation. Experiments on both existing event types (e.g., ACE, ERE) and new event types (e.g., FrameNet) demonstrate the effectiveness of our approach. \textit{Without any manual annotations} for 23 new event types, our zero-shot framework achieved performance comparable to a state-of-the-art supervised model which is trained from the annotations of 500 event mentions.

北京阿比特科技有限公司