亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

While standard speaker diarization attempts to answer the question "who spoken when", most of relevant applications in reality are more interested in determining "who spoken what". Whether it is the conventional modularized approach or the more recent end-to-end neural diarization (EEND), an additional automatic speech recognition (ASR) model and an orchestration algorithm are required to associate the speaker labels with recognized words. In this paper, we propose Word-level End-to-End Neural Diarization (WEEND) with auxiliary network, a multi-task learning algorithm that performs end-to-end ASR and speaker diarization in the same neural architecture. That is, while speech is being recognized, speaker labels are predicted simultaneously for each recognized word. Experimental results demonstrate that WEEND outperforms the turn-based diarization baseline system on all 2-speaker short-form scenarios and has the capability to generalize to audio lengths of 5 minutes. Although 3+speaker conversations are harder, we find that with enough in-domain training data, WEEND has the potential to deliver high quality diarized text.

相關內容

Internet of Things applications have gained widespread recognition for their efficacy in typical scenarios, such as smart cities and smart healthcare. Nonetheless, there exist numerous unconventional situations where IoT technologies have not yet been massively applied, though they can be extremely useful. One of such domains is the underground mining sector, where enhancing automation monitoring through wireless communications is of essential significance. In this paper, we focus on the development, implementation, and evaluation of a LoRa-based multi-hop network tailored specifically for monitoring underground mining environments, where data traffic is sporadic, but energy efficiency is of paramount importance. We hence define a synchronization framework that makes it possible for the nodes to sleep for most of the time, waking up only when they need to exchange traffic. Notably, our network achieves a sub 40us proven synchronization accuracy between parent-child pairs with minimum overhead for diverse topologies, rendering it highly viable for subterranean operations. Furthermore, for proper network dimensioning, we model the interplay between network's throughput, frame size, and sampling periods of potential applications. Moreover, we propose a model to estimate devices' duty cycle based on their position within the multi-hop network, along with empirical observations for its validation. The proposed models make it possible to optimize the network's performance to meet the specific demands that can arise from the different subterranean use cases, in which robustness, low power operation, and compliance with radio-frequency regulations are key requirements that must be met.

Finding synthetic artifacts of spoofing data will help the anti-spoofing countermeasures (CMs) system discriminate between spoofed and real speech. The Conformer combines the best of convolutional neural network and the Transformer, allowing it to aggregate global and local information. This may benefit the CM system to capture the synthetic artifacts hidden both locally and globally. In this paper, we present the transfer learning based MFA-Conformer structure for CM systems. By pre-training the Conformer encoder with different tasks, the robustness of the CM system is enhanced. The proposed method is evaluated on both Chinese and English spoofing detection databases. In the FAD clean set, proposed method achieves an EER of 0.04%, which dramatically outperforms the baseline. Our system is also comparable to the pre-training methods base on Wav2Vec 2.0. Moreover, we also provide a detailed analysis of the robustness of different models.

The emergence of large-scale pretrained language models has revolutionized the capabilities of new AI application, especially in the realm of crafting chatbots with distinct personas. Given the "stimulus-response" nature of chatbots, this paper unveils an innovative open-ended interview-style approach for personality assessment on role-playing chatbots, which offers a richer comprehension of their intrinsic personalities. We conduct personality assessments on 32 role-playing chatbots created by the ChatHaruhi library, across both the Big Five and MBTI dimensions, and measure their alignment with human perception. Evaluation results underscore that modern role-playing chatbots based on LLMs can effectively portray personality traits of corresponding characters, with an alignment rate of 82.8% compared with human-perceived personalities. Besides, we also suggest potential strategies for shaping chatbots' personalities. Hence, this paper serves as a cornerstone study for role-playing chatbots that intersects computational linguistics and psychology. Our resources are available at //github.com/LC1332/Chat-Haruhi-Suzumiya

Conventional statistical wisdom established a well-understood relationship between model complexity and prediction error, typically presented as a U-shaped curve reflecting a transition between under- and overfitting regimes. However, motivated by the success of overparametrized neural networks, recent influential work has suggested this theory to be generally incomplete, introducing an additional regime that exhibits a second descent in test error as the parameter count p grows past sample size n - a phenomenon dubbed double descent. While most attention has naturally been given to the deep-learning setting, double descent was shown to emerge more generally across non-neural models: known cases include linear regression, trees, and boosting. In this work, we take a closer look at evidence surrounding these more classical statistical machine learning methods and challenge the claim that observed cases of double descent truly extend the limits of a traditional U-shaped complexity-generalization curve therein. We show that once careful consideration is given to what is being plotted on the x-axes of their double descent plots, it becomes apparent that there are implicitly multiple complexity axes along which the parameter count grows. We demonstrate that the second descent appears exactly (and only) when and where the transition between these underlying axes occurs, and that its location is thus not inherently tied to the interpolation threshold p=n. We then gain further insight by adopting a classical nonparametric statistics perspective. We interpret the investigated methods as smoothers and propose a generalized measure for the effective number of parameters they use on unseen examples, using which we find that their apparent double descent curves indeed fold back into more traditional convex shapes - providing a resolution to tensions between double descent and statistical intuition.

The growing computing power over the years has enabled simulations to become more complex and accurate. However, high-fidelity simulations, while immensely valuable for scientific discovery and problem solving, come with significant computational demands. As a result, it is common to run a low-fidelity model with a subgrid-scale model to reduce the computational cost, but selecting the appropriate subgrid-scale models and tuning them are challenging. We propose a novel method for learning the subgrid-scale model effects when simulating partial differential equations using neural ordinary differential equations in the context of discontinuous Galerkin (DG) spatial discretization. Our approach learns the missing scales of the low-order DG solver at a continuous level and hence improves the accuracy of the low-order DG approximations as well as accelerates the filtered high-order DG simulations with a certain degree of precision. We demonstrate the performance of our approach through multidimensional Taylor--Green vortex examples at different Reynolds numbers and times, which cover laminar, transitional, and turbulent regimes. The proposed method not only reconstructs the subgrid-scale from the low-order (1st-order) approximation but also speeds up the filtered high-order DG (6th-order) simulation by two orders of magnitude.

Standard conformal prediction methods provide a marginal coverage guarantee, which means that for a random test point, the conformal prediction set contains the true label with a user-specified probability. In many classification problems, we would like to obtain a stronger guarantee--that for test points of a specific class, the prediction set contains the true label with the same user-chosen probability. For the latter goal, existing conformal prediction methods do not work well when there is a limited amount of labeled data per class, as is often the case in real applications where the number of classes is large. We propose a method called clustered conformal prediction that clusters together classes having "similar" conformal scores and performs conformal prediction at the cluster level. Based on empirical evaluation across four image data sets with many (up to 1000) classes, we find that clustered conformal typically outperforms existing methods in terms of class-conditional coverage and set size metrics.

Bayesian optimization (BO) has emerged as a potent tool for addressing intricate decision-making challenges, especially in public policy domains such as police districting. However, its broader application in public policymaking is hindered by the complexity of defining feasible regions and the high-dimensionality of decisions. This paper introduces the Hidden-Constrained Latent Space Bayesian Optimization (HC-LSBO), a novel BO method integrated with a latent decision model. This approach leverages a variational autoencoder to learn the distribution of feasible decisions, enabling a two-way mapping between the original decision space and a lower-dimensional latent space. By doing so, HC-LSBO captures the nuances of hidden constraints inherent in public policymaking, allowing for optimization in the latent space while evaluating objectives in the original space. We validate our method through numerical experiments on both synthetic and real data sets, with a specific focus on large-scale police districting problems in Atlanta, Georgia. Our results reveal that HC-LSBO offers notable improvements in performance and efficiency compared to the baselines.

A significant challenge in control theory and technology is to devise agile and less resource-intensive experiments for evaluating the performance and feasibility of control algorithms for the collective coordination of large-scale complex systems. Many new methodologies are based on macroscopic representations of the emerging system behavior, and can be easily validated only through numerical simulations, because of the inherent hurdle of developing full scale experimental platforms. In this paper, we introduce a novel hybrid mixed reality set-up for testing swarm robotics techniques, focusing on the collective motion of robotic swarms. This hybrid apparatus combines both real differential drive robots and virtual agents to create a heterogeneous swarm of tunable size. We validate the methodology by extending to higher dimensions, and investigating experimentally, continuification-based control methods for swarms. Our study demonstrates the versatility and effectiveness of the platform for conducting large-scale swarm robotics experiments. Also, it contributes new theoretical insights into control algorithms exploiting continuification approaches.

Querying knowledge graphs (KGs) using deep learning approaches can naturally leverage the reasoning and generalization ability to learn to infer better answers. Traditional neural complex query answering (CQA) approaches mostly work on entity-centric KGs. However, in the real world, we also need to make logical inferences about events, states, and activities (i.e., eventualities or situations) to push learning systems from System I to System II, as proposed by Yoshua Bengio. Querying logically from an EVentuality-centric KG (EVKG) can naturally provide references to such kind of intuitive and logical inference. Thus, in this paper, we propose a new framework to leverage neural methods to answer complex logical queries based on an EVKG, which can satisfy not only traditional first-order logic constraints but also implicit logical constraints over eventualities concerning their occurrences and orders. For instance, if we know that "Food is bad" happens before "PersonX adds soy sauce", then "PersonX adds soy sauce" is unlikely to be the cause of "Food is bad" due to implicit temporal constraint. To facilitate consistent reasoning on EVKGs, we propose Complex Eventuality Query Answering (CEQA), a more rigorous definition of CQA that considers the implicit logical constraints governing the temporal order and occurrence of eventualities. In this manner, we propose to leverage theorem provers for constructing benchmark datasets to ensure the answers satisfy implicit logical constraints. We also propose a Memory-Enhanced Query Encoding (MEQE) approach to significantly improve the performance of state-of-the-art neural query encoders on the CEQA task.

Object detection is considered as one of the most challenging problems in computer vision, since it requires correct prediction of both classes and locations of objects in images. In this study, we define a more difficult scenario, namely zero-shot object detection (ZSD) where no visual training data is available for some of the target object classes. We present a novel approach to tackle this ZSD problem, where a convex combination of embeddings are used in conjunction with a detection framework. For evaluation of ZSD methods, we propose a simple dataset constructed from Fashion-MNIST images and also a custom zero-shot split for the Pascal VOC detection challenge. The experimental results suggest that our method yields promising results for ZSD.

北京阿比特科技有限公司