Machine Unlearning, the process of selectively eliminating the influence of certain data examples used during a model's training, has gained significant attention as a means for practitioners to comply with recent data protection regulations. However, existing unlearning methods face critical drawbacks, including their prohibitively high cost, often associated with a large number of hyperparameters, and the limitation of forgetting only relatively small data portions. This often makes retraining the model from scratch a quicker and more effective solution. In this study, we introduce Gradient-based and Task-Agnostic machine Unlearning ($\nabla \tau$), an optimization framework designed to remove the influence of a subset of training data efficiently. It applies adaptive gradient ascent to the data to be forgotten while using standard gradient descent for the remaining data. $\nabla \tau$ offers multiple benefits over existing approaches. It enables the unlearning of large sections of the training dataset (up to 30%). It is versatile, supporting various unlearning tasks (such as subset forgetting or class removal) and applicable across different domains (images, text, etc.). Importantly, $\nabla \tau$ requires no hyperparameter adjustments, making it a more appealing option than retraining the model from scratch. We evaluate our framework's effectiveness using a set of well-established Membership Inference Attack metrics, demonstrating up to 10% enhancements in performance compared to state-of-the-art methods without compromising the original model's accuracy.
We consider a novel algorithm, for the completion of partially observed low-rank matrices in a structured setting where each entry can be chosen from a finite discrete alphabet set, such as in common recommender systems. The proposed low-rank matrix completion (MC) method is an improved variation of state-of-the-art (SotA) discrete aware matrix completion method which we previously proposed, in which discreteness is enforced by an $\ell_0$-norm regularizer, not by replaced with the $\ell_1$-norm, but instead approximated by a continuous and differentiable function normalized via fractional programming (FP) under a proximal gradient (PG) framework. Simulation results demonstrate the superior performance of the new method compared to the SotA techniques as well as the earlier $\ell_1$-norm-based discrete-aware matrix completion approach.
Prior work has explicated the coloniality of artificial intelligence (AI) development and deployment through mechanisms such as extractivism, automation, sociological essentialism, surveillance, and containment. However, that work has not engaged much with alignment: teaching behaviors to a large language model (LLM) in line with desired values, and has not considered a mechanism that arises within that process: moral absolutism -- a part of the coloniality of knowledge. Colonialism has a history of altering the beliefs and values of colonized peoples; in this paper, I argue that this history is recapitulated in current LLM alignment practices and technologies. Furthermore, I suggest that AI alignment be decolonialized using three forms of openness: openness of models, openness to society, and openness to excluded knowledges. This suggested approach to decolonial AI alignment uses ideas from the argumentative moral philosophical tradition of Hinduism, which has been described as an open-source religion. One concept used is vi\'{s}e\d{s}a-dharma, or particular context-specific notions of right and wrong. At the end of the paper, I provide a suggested reference architecture to work toward the proposed framework.
Neural network interatomic potentials (NNPs) have recently proven to be powerful tools to accurately model complex molecular systems while bypassing the high numerical cost of ab-initio molecular dynamics simulations. In recent years, numerous advances in model architectures as well as the development of hybrid models combining machine-learning (ML) with more traditional, physically-motivated, force-field interactions have considerably increased the design space of ML potentials. In this paper, we present FeNNol, a new library for building, training and running force-field-enhanced neural network potentials. It provides a flexible and modular system for building hybrid models, allowing to easily combine state-of-the-art embeddings with ML-parameterized physical interaction terms without the need for explicit programming. Furthermore, FeNNol leverages the automatic differentiation and just-in-time compilation features of the Jax Python library to enable fast evaluation of NNPs, shrinking the performance gap between ML potentials and standard force-fields. This is demonstrated with the popular ANI-2x model reaching simulation speeds nearly on par with the AMOEBA polarizable force-field on commodity GPUs (GPU=Graphics processing unit). We hope that FeNNol will facilitate the development and application of new hybrid NNP architectures for a wide range of molecular simulation problems.
Coresets are arguably the most popular compression paradigm for center-based clustering objectives such as $k$-means. Given a point set $P$, a coreset $\Omega$ is a small, weighted summary that preserves the cost of all candidate solutions $S$ up to a $(1\pm \varepsilon)$ factor. For $k$-means in $d$-dimensional Euclidean space the cost for solution $S$ is $\sum_{p\in P}\min_{s\in S}\|p-s\|^2$. A very popular method for coreset construction, both in theory and practice, is Sensitivity Sampling, where points are sampled in proportion to their importance. We show that Sensitivity Sampling yields optimal coresets of size $\tilde{O}(k/\varepsilon^2\min(\sqrt{k},\varepsilon^{-2}))$ for worst-case instances. Uniquely among all known coreset algorithms, for well-clusterable data sets with $\Omega(1)$ cost stability, Sensitivity Sampling gives coresets of size $\tilde{O}(k/\varepsilon^2)$, improving over the worst-case lower bound. Notably, Sensitivity Sampling does not have to know the cost stability in order to exploit it: It is appropriately sensitive to the clusterability of the data set while being oblivious to it. We also show that any coreset for stable instances consisting of only input points must have size $\Omega(k/\varepsilon^2)$. Our results for Sensitivity Sampling also extend to the $k$-median problem, and more general metric spaces.
Description Logics are a formalism used in the knowledge representation, where the knowledge is captured in the form of concepts constructed in a controlled way from a restricted vocabulary. This allows one to test effectively for consistency of and the subsumption between the concepts. Unification of concepts may likewise become a useful tool in analysing the relations between concepts. The unification problem has been solved for the description logics $\mathcal{FL}_0$ and $\mathcal{EL}$. These small logics do not provide any means to express negation. Here we show an algorithm solving unification in $\mathcal{FL}_\bot$, the logic that extends $\mathcal{FL}_0$ with the bottom concept. Bottom allows one to express that two concepts are disjoint. Our algorithm runs in exponential time, with respect to the size of the problem.
This paper investigates a range of empirical risk functions and regularization methods suitable for self-training methods in semi-supervised learning. These approaches draw inspiration from various divergence measures, such as $f$-divergences and $\alpha$-R\'enyi divergences. Inspired by the theoretical foundations rooted in divergences, i.e., $f$-divergences and $\alpha$-R\'enyi divergence, we also provide valuable insights to enhance the understanding of our empirical risk functions and regularization techniques. In the pseudo-labeling and entropy minimization techniques as self-training methods for effective semi-supervised learning, the self-training process has some inherent mismatch between the true label and pseudo-label (noisy pseudo-labels) and some of our empirical risk functions are robust, concerning noisy pseudo-labels. Under some conditions, our empirical risk functions demonstrate better performance when compared to traditional self-training methods.
For nearly three decades, language models derived from the $n$-gram assumption held the state of the art on the task. The key to their success lay in the application of various smoothing techniques that served to combat overfitting. However, when neural language models toppled $n$-gram models as the best performers, $n$-gram smoothing techniques became less relevant. Indeed, it would hardly be an understatement to suggest that the line of inquiry into $n$-gram smoothing techniques became dormant. This paper re-opens the role classical $n$-gram smoothing techniques may play in the age of neural language models. First, we draw a formal equivalence between label smoothing, a popular regularization technique for neural language models, and add-$\lambda$ smoothing. Second, we derive a generalized framework for converting any $n$-gram smoothing technique into a regularizer compatible with neural language models. Our empirical results find that our novel regularizers are comparable to and, indeed, sometimes outperform label smoothing on language modeling and machine translation.
Click-through rate (CTR) prediction plays a critical role in recommender systems and online advertising. The data used in these applications are multi-field categorical data, where each feature belongs to one field. Field information is proved to be important and there are several works considering fields in their models. In this paper, we proposed a novel approach to model the field information effectively and efficiently. The proposed approach is a direct improvement of FwFM, and is named as Field-matrixed Factorization Machines (FmFM, or $FM^2$). We also proposed a new explanation of FM and FwFM within the FmFM framework, and compared it with the FFM. Besides pruning the cross terms, our model supports field-specific variable dimensions of embedding vectors, which acts as soft pruning. We also proposed an efficient way to minimize the dimension while keeping the model performance. The FmFM model can also be optimized further by caching the intermediate vectors, and it only takes thousands of floating-point operations (FLOPs) to make a prediction. Our experiment results show that it can out-perform the FFM, which is more complex. The FmFM model's performance is also comparable to DNN models which require much more FLOPs in runtime.
Graph convolution networks (GCN) are increasingly popular in many applications, yet remain notoriously hard to train over large graph datasets. They need to compute node representations recursively from their neighbors. Current GCN training algorithms suffer from either high computational costs that grow exponentially with the number of layers, or high memory usage for loading the entire graph and node embeddings. In this paper, we propose a novel efficient layer-wise training framework for GCN (L-GCN), that disentangles feature aggregation and feature transformation during training, hence greatly reducing time and memory complexities. We present theoretical analysis for L-GCN under the graph isomorphism framework, that L-GCN leads to as powerful GCNs as the more costly conventional training algorithm does, under mild conditions. We further propose L^2-GCN, which learns a controller for each layer that can automatically adjust the training epochs per layer in L-GCN. Experiments show that L-GCN is faster than state-of-the-arts by at least an order of magnitude, with a consistent of memory usage not dependent on dataset size, while maintaining comparable prediction performance. With the learned controller, L^2-GCN can further cut the training time in half. Our codes are available at //github.com/Shen-Lab/L2-GCN.
Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.