亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the use of local consistency methods as reductions between constraint satisfaction problems (CSPs), and promise version thereof, with the aim to classify these reductions in a similar way as the algebraic approach classifies gadget reductions between CSPs. This research is motivated by the requirement of more expressive reductions in the scope of promise CSPs. While gadget reductions are enough to provide all necessary hardness in the scope of (finite domain) non-promise CSP, in promise CSPs a wider class of reductions needs to be used. We provide a general framework of reductions, which we call consistency reductions, that covers most (if not all) reductions recently used for proving NP-hardness of promise CSPs. We prove some basic properties of these reductions, and provide the first steps towards understanding the power of consistency reductions by characterizing a fragment associated to arc-consistency in terms of polymorphisms of the template. In addition to showing hardness, consistency reductions can also be used to provide feasible algorithms by reducing to a fixed tractable (promise) CSP, for example, to solving systems of affine equations. In this direction, among other results, we describe the well-known Sherali-Adams hierarchy for CSP in terms of a consistency reduction to linear programming.

相關內容

In the study of extremes, the presence of asymptotic independence signifies that extreme events across multiple variables are probably less likely to occur together. Although well-understood in a bivariate context, the concept remains relatively unexplored when addressing the nuances of joint occurrence of extremes in higher dimensions. In this paper, we propose a notion of mutual asymptotic independence to capture the behavior of joint extremes in dimensions larger than two and contrast it with the classical notion of (pairwise) asymptotic independence. Furthermore, we define $k$-wise asymptotic independence which lies in between pairwise and mutual asymptotic independence. The concepts are compared using examples of Archimedean, Gaussian and Marshall-Olkin copulas among others. Notably, for the popular Gaussian copula, we provide explicit conditions on the correlation matrix for mutual asymptotic independence to hold; moreover, we are able to compute exact tail orders for various tail events.

This note discusses a simple modification of cross-conformal prediction inspired by recent work on e-values. The precursor of conformal prediction developed in the 1990s by Gammerman, Vapnik, and Vovk was also based on e-values and is called conformal e-prediction in this note. Replacing e-values by p-values led to conformal prediction, which has important advantages over conformal e-prediction without obvious disadvantages. The situation with cross-conformal prediction is, however, different: whereas for cross-conformal prediction validity is only an empirical fact (and can be broken with excessive randomization), this note draws the reader's attention to the obvious fact that cross-conformal e-prediction enjoys a guaranteed property of validity.

This paper presents the first analysis of parameter-uniform convergence for a hybridizable discontinuous Galerkin (HDG) method applied to a singularly perturbed convection-diffusion problem in 2D using a Shishkin mesh. The primary difficulty lies in accurately estimating the convection term in the layer, where existing methods often fall short. To address this, a novel error control technique is employed, along with reasonable assumptions regarding the stabilization function. The results show that, with polynomial degrees not exceeding $k$, the method achieves supercloseness of almost $k+\frac{1}{2}$ order in an energy norm. Numerical experiments confirm the theoretical accuracy and efficiency of the proposed method.

This paper studies the influence of probabilism and non-determinism on some quantitative aspect X of the execution of a system modeled as a Markov decision process (MDP). To this end, the novel notion of demonic variance is introduced: For a random variable X in an MDP M, it is defined as 1/2 times the maximal expected squared distance of the values of X in two independent execution of M in which also the non-deterministic choices are resolved independently by two distinct schedulers. It is shown that the demonic variance is between 1 and 2 times as large as the maximal variance of X in M that can be achieved by a single scheduler. This allows defining a non-determinism score for M and X measuring how strongly the difference of X in two executions of M can be influenced by the non-deterministic choices. Properties of MDPs M with extremal values of the non-determinism score are established. Further, the algorithmic problems of computing the maximal variance and the demonic variance are investigated for two random variables, namely weighted reachability and accumulated rewards. In the process, also the structure of schedulers maximizing the variance and of scheduler pairs realizing the demonic variance is analyzed.

Confidence assessments of semantic segmentation algorithms in remote sensing are important. It is a desirable property of models to a priori know if they produce an incorrect output. Evaluations of the confidence assigned to the estimates of models for the task of classification in Earth Observation (EO) are crucial as they can be used to achieve improved semantic segmentation performance and prevent high error rates during inference and deployment. The model we develop, the Confidence Assessments of classification algorithms for Semantic segmentation (CAS) model, performs confidence evaluations at both the segment and pixel levels, and outputs both labels and confidence. The outcome of this work has important applications. The main application is the evaluation of EO Foundation Models on semantic segmentation downstream tasks, in particular land cover classification using satellite Copernicus Sentinel-2 data. The evaluation shows that the proposed model is effective and outperforms other alternative baseline models.

Modelling the extremal dependence of bivariate variables is important in a wide variety of practical applications, including environmental planning, catastrophe modelling and hydrology. The majority of these approaches are based on the framework of bivariate regular variation, and a wide range of literature is available for estimating the dependence structure in this setting. However, such procedures are only applicable to variables exhibiting asymptotic dependence, even though asymptotic independence is often observed in practice. In this paper, we consider the so-called `angular dependence function'; this quantity summarises the extremal dependence structure for asymptotically independent variables. Until recently, only pointwise estimators of the angular dependence function have been available. We introduce a range of global estimators and compare them to another recently introduced technique for global estimation through a systematic simulation study, and a case study on river flow data from the north of England, UK.

Rational approximation is a powerful tool to obtain accurate surrogates for nonlinear functions that are easy to evaluate and linearize. The interpolatory adaptive Antoulas--Anderson (AAA) method is one approach to construct such approximants numerically. For large-scale vector- and matrix-valued functions, however, the direct application of the set-valued variant of AAA becomes inefficient. We propose and analyze a new sketching approach for such functions called sketchAAA that, with high probability, leads to much better approximants than previously suggested approaches while retaining efficiency. The sketching approach works in a black-box fashion where only evaluations of the nonlinear function at sampling points are needed. Numerical tests with nonlinear eigenvalue problems illustrate the efficacy of our approach, with speedups above 200 for sampling large-scale black-box functions without sacrificing on accuracy.

Specifying a prior distribution is an essential part of solving Bayesian inverse problems. The prior encodes a belief on the nature of the solution and this regularizes the problem. In this article we completely characterize a Gaussian prior that encodes the belief that the solution is a structured tensor. We first define the notion of (A,b)-constrained tensors and show that they describe a large variety of different structures such as Hankel, circulant, triangular, symmetric, and so on. Then we completely characterize the Gaussian probability distribution of such tensors by specifying its mean vector and covariance matrix. Furthermore, explicit expressions are proved for the covariance matrix of tensors whose entries are invariant under a permutation. These results unlock a whole new class of priors for Bayesian inverse problems. We illustrate how new kernel functions can be designed and efficiently computed and apply our results on two particular Bayesian inverse problems: completing a Hankel matrix from a few noisy measurements and learning an image classifier of handwritten digits. The effectiveness of the proposed priors is demonstrated for both problems. All applications have been implemented as reactive Pluto notebooks in Julia.

Practical parameter identifiability in ODE-based epidemiological models is a known issue, yet one that merits further study. It is essentially ubiquitous due to noise and errors in real data. In this study, to avoid uncertainty stemming from data of unknown quality, simulated data with added noise are used to investigate practical identifiability in two distinct epidemiological models. Particular emphasis is placed on the role of initial conditions, which are assumed unknown, except those that are directly measured. Instead of just focusing on one method of estimation, we use and compare results from various broadly used methods, including maximum likelihood and Markov Chain Monte Carlo (MCMC) estimation. Among other findings, our analysis revealed that the MCMC estimator is overall more robust than the point estimators considered. Its estimates and predictions are improved when the initial conditions of certain compartments are fixed so that the model becomes globally identifiable. For the point estimators, whether fixing or fitting the that are not directly measured improves parameter estimates is model-dependent. Specifically, in the standard SEIR model, fixing the initial condition for the susceptible population S(0) improved parameter estimates, while this was not true when fixing the initial condition of the asymptomatic population in a more involved model. Our study corroborates the change in quality of parameter estimates upon usage of pre-peak or post-peak time-series under consideration. Finally, our examples suggest that in the presence of significantly noisy data, the value of structural identifiability is moot.

In relational verification, judicious alignment of computational steps facilitates proof of relations between programs using simple relational assertions. Relational Hoare logics (RHL) provide compositional rules that embody various alignments of executions. Seemingly more flexible alignments can be expressed in terms of product automata based on program transition relations. A single degenerate alignment rule (self-composition), atop a complete Hoare logic, comprises a RHL for $\forall\forall$ properties that is complete in the ordinary logical sense (Cook'78). The notion of alignment completeness was previously proposed as a more satisfactory measure, and some rules were shown to be alignment complete with respect to a few ad hoc forms of alignment automata. This paper proves alignment completeness with respect to a general class of $\forall\forall$ alignment automata, for a RHL comprised of standard rules together with a rule of semantics-preserving rewrites based on Kleene algebra with tests. A new logic for $\forall\exists$ properties is introduced and shown to be alignment complete. The $\forall\forall$ and $\forall\exists$ automata are shown to be semantically complete. Thus the logics are both complete in the ordinary sense. Recent work by D'Osualdo et al highlights the importance of completeness relative to assumptions (which we term entailment completeness), and presents $\forall\forall$ examples seemingly beyond the scope of RHLs. Additional rules enable these examples to be proved in our RHL, shedding light on the open problem of entailment completeness.

北京阿比特科技有限公司