亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Automatic API method recommendation is an essential task of code intelligence, which aims to suggest suitable APIs for programming queries. Existing approaches can be categorized into two primary groups: retrieval-based and learning-based approaches. Although these approaches have achieved remarkable success, they still come with notable limitations. The retrieval-based approaches rely on the text representation capabilities of embedding models, while the learning-based approaches require extensive task-specific labeled data for training. To mitigate the limitations, we propose APIGen, a generative API recommendation approach through enhanced in-context learning (ICL). APIGen involves two main components: (1) Diverse Examples Selection. APIGen searches for similar posts to the programming queries from the lexical, syntactical, and semantic perspectives, providing more informative examples for ICL. (2) Guided API Recommendation. APIGen enables large language models (LLMs) to perform reasoning before generating API recommendations, where the reasoning involves fine-grained matching between the task intent behind the queries and the factual knowledge of the APIs. With the reasoning process, APIGen makes recommended APIs better meet the programming requirement of queries and also enhances the interpretability of results. We compare APIGen with four existing approaches on two publicly available benchmarks. Experiments show that APIGen outperforms the best baseline CLEAR by 105.8% in method-level API recommendation and 54.3% in class-level API recommendation in terms of SuccessRate@1. Besides, APIGen achieves an average 49.87% increase compared to the zero-shot performance of popular LLMs such as GPT-4 in method-level API recommendation regarding the SuccessRate@3 metric.

相關內容

應用程序接(jie)(jie)口(kou)(簡稱(cheng) API),又稱(cheng)為應用編(bian)程接(jie)(jie)口(kou),就(jiu)是軟件系統不同組(zu)成部(bu)分銜(xian)接(jie)(jie)的約定。

In recent years data-driven machine learning approaches have been extensively studied to replace or enhance traditionally model-based processing in digital communication systems. In this work, we focus on equalization and propose a novel neural network (NN-)based approach, referred to as SICNN. SICNN is designed by deep unfolding a model-based iterative soft interference cancellation (SIC) method. It eliminates the main disadvantages of its model-based counterpart, which suffers from high computational complexity and performance degradation due to required approximations. We present different variants of SICNN. SICNNv1 is specifically tailored to single carrier frequency domain equalization (SC-FDE) systems, the communication system mainly regarded in this work. SICNNv2 is more universal and is applicable as an equalizer in any communication system with a block-based data transmission scheme. Moreover, for both SICNNv1 and SICNNv2, we present versions with highly reduced numbers of learnable parameters. Another contribution of this work is a novel approach for generating training datasets for NN-based equalizers, which significantly improves their performance at high signal-to-noise ratios. We compare the bit error ratio performance of the proposed NN-based equalizers with state-of-the-art model-based and NN-based approaches, highlighting the superiority of SICNNv1 over all other methods for SC-FDE. Exemplarily, to emphasize its universality, SICNNv2 is additionally applied to a unique word orthogonal frequency division multiplexing (UW-OFDM) system, where it achieves state-of-the-art performance. Furthermore, we present a thorough complexity analysis of the proposed NN-based equalization approaches, and we investigate the influence of the training set size on the performance of NN-based equalizers.

The ability of Large Language Models (LLMs) to critique and refine their reasoning is crucial for their application in evaluation, feedback provision, and self-improvement. This paper introduces CriticBench, a comprehensive benchmark designed to assess LLMs' abilities to critique and rectify their reasoning across a variety of tasks. CriticBench encompasses five reasoning domains: mathematical, commonsense, symbolic, coding, and algorithmic. It compiles 15 datasets and incorporates responses from three LLM families. Utilizing CriticBench, we evaluate and dissect the performance of 17 LLMs in generation, critique, and correction reasoning, i.e., GQC reasoning. Our findings reveal: (1) a linear relationship in GQC capabilities, with critique-focused training markedly enhancing performance; (2) a task-dependent variation in correction effectiveness, with logic-oriented tasks being more amenable to correction; (3) GQC knowledge inconsistencies that decrease as model size increases; and (4) an intriguing inter-model critiquing dynamic, where stronger models are better at critiquing weaker ones, while weaker models can surprisingly surpass stronger ones in their self-critique. We hope these insights into the nuanced critique-correct reasoning of LLMs will foster further research in LLM critique and self-improvement.

Hardware development relies on simulations, particularly cycle-accurate RTL (Register Transfer Level) simulations, which consume significant time. As single-processor performance grows only slowly, conventional, single-threaded RTL simulation is becoming less practical for increasingly complex chips and systems. A solution is parallel RTL simulation, where ideally, simulators could run on thousands of parallel cores. However, existing simulators can only exploit tens of cores. This paper studies the challenges inherent in running parallel RTL simulation on a multi-thousand-core machine (the Graphcore IPU, a 1472-core machine). Simulation performance requires balancing three factors: synchronization, communication, and computation. We experimentally evaluate each metric and analyze how it affects parallel simulation speed, drawing on contrasts between the large-scale IPU and smaller but faster x86 systems. Using this analysis, we build Parendi, an RTL simulator for the IPU. It distributes RTL simulation across 5888 cores on 4 IPU sockets. Parendi runs large RTL designs up to 4x faster than a powerful, state-of-the-art x86 multicore system.

Automated theorem provers and formal proof assistants are general reasoning systems that are in theory capable of proving arbitrarily hard theorems, thus solving arbitrary problems reducible to mathematics and logical reasoning. In practice, such systems however face large combinatorial explosion, and therefore include many heuristics and choice points that considerably influence their performance. This is an opportunity for trained machine learning predictors, which can guide the work of such reasoning systems. Conversely, deductive search supported by the notion of logically valid proof allows one to train machine learning systems on large reasoning corpora. Such bodies of proof are usually correct by construction and when combined with more and more precise trained guidance they can be boostrapped into very large corpora, with increasingly long reasoning chains and possibly novel proof ideas. In this paper we provide an overview of several automated reasoning and theorem proving domains and the learning and AI methods that have been so far developed for them. These include premise selection, proof guidance in several settings, AI systems and feedback loops iterating between reasoning and learning, and symbolic classification problems.

Deep model fusion/merging is an emerging technique that merges the parameters or predictions of multiple deep learning models into a single one. It combines the abilities of different models to make up for the biases and errors of a single model to achieve better performance. However, deep model fusion on large-scale deep learning models (e.g., LLMs and foundation models) faces several challenges, including high computational cost, high-dimensional parameter space, interference between different heterogeneous models, etc. Although model fusion has attracted widespread attention due to its potential to solve complex real-world tasks, there is still a lack of complete and detailed survey research on this technique. Accordingly, in order to understand the model fusion method better and promote its development, we present a comprehensive survey to summarize the recent progress. Specifically, we categorize existing deep model fusion methods as four-fold: (1) "Mode connectivity", which connects the solutions in weight space via a path of non-increasing loss, in order to obtain better initialization for model fusion; (2) "Alignment" matches units between neural networks to create better conditions for fusion; (3) "Weight average", a classical model fusion method, averages the weights of multiple models to obtain more accurate results closer to the optimal solution; (4) "Ensemble learning" combines the outputs of diverse models, which is a foundational technique for improving the accuracy and robustness of the final model. In addition, we analyze the challenges faced by deep model fusion and propose possible research directions for model fusion in the future. Our review is helpful in deeply understanding the correlation between different model fusion methods and practical application methods, which can enlighten the research in the field of deep model fusion.

Causal Machine Learning (CausalML) is an umbrella term for machine learning methods that formalize the data-generation process as a structural causal model (SCM). This allows one to reason about the effects of changes to this process (i.e., interventions) and what would have happened in hindsight (i.e., counterfactuals). We categorize work in \causalml into five groups according to the problems they tackle: (1) causal supervised learning, (2) causal generative modeling, (3) causal explanations, (4) causal fairness, (5) causal reinforcement learning. For each category, we systematically compare its methods and point out open problems. Further, we review modality-specific applications in computer vision, natural language processing, and graph representation learning. Finally, we provide an overview of causal benchmarks and a critical discussion of the state of this nascent field, including recommendations for future work.

We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.

Graph representation learning resurges as a trending research subject owing to the widespread use of deep learning for Euclidean data, which inspire various creative designs of neural networks in the non-Euclidean domain, particularly graphs. With the success of these graph neural networks (GNN) in the static setting, we approach further practical scenarios where the graph dynamically evolves. Existing approaches typically resort to node embeddings and use a recurrent neural network (RNN, broadly speaking) to regulate the embeddings and learn the temporal dynamics. These methods require the knowledge of a node in the full time span (including both training and testing) and are less applicable to the frequent change of the node set. In some extreme scenarios, the node sets at different time steps may completely differ. To resolve this challenge, we propose EvolveGCN, which adapts the graph convolutional network (GCN) model along the temporal dimension without resorting to node embeddings. The proposed approach captures the dynamism of the graph sequence through using an RNN to evolve the GCN parameters. Two architectures are considered for the parameter evolution. We evaluate the proposed approach on tasks including link prediction, edge classification, and node classification. The experimental results indicate a generally higher performance of EvolveGCN compared with related approaches. The code is available at \url{//github.com/IBM/EvolveGCN}.

The design of deep graph models still remains to be investigated and the crucial part is how to explore and exploit the knowledge from different hops of neighbors in an efficient way. In this paper, we propose a novel RNN-like deep graph neural network architecture by incorporating AdaBoost into the computation of network; and the proposed graph convolutional network called AdaGCN~(AdaBoosting Graph Convolutional Network) has the ability to efficiently extract knowledge from high-order neighbors and integrate knowledge from different hops of neighbors into the network in an AdaBoost way. We also present the architectural difference between AdaGCN and existing graph convolutional methods to show the benefits of our proposal. Finally, extensive experiments demonstrate the state-of-the-art prediction performance and the computational advantage of our approach AdaGCN.

We give an overview of recent exciting achievements of deep reinforcement learning (RL). We discuss six core elements, six important mechanisms, and twelve applications. We start with background of machine learning, deep learning and reinforcement learning. Next we discuss core RL elements, including value function, in particular, Deep Q-Network (DQN), policy, reward, model, planning, and exploration. After that, we discuss important mechanisms for RL, including attention and memory, unsupervised learning, transfer learning, multi-agent RL, hierarchical RL, and learning to learn. Then we discuss various applications of RL, including games, in particular, AlphaGo, robotics, natural language processing, including dialogue systems, machine translation, and text generation, computer vision, neural architecture design, business management, finance, healthcare, Industry 4.0, smart grid, intelligent transportation systems, and computer systems. We mention topics not reviewed yet, and list a collection of RL resources. After presenting a brief summary, we close with discussions. Please see Deep Reinforcement Learning, arXiv:1810.06339, for a significant update.

北京阿比特科技有限公司