We give a short survey of recent results on sparse-grid linear algorithms of approximate recovery and integration of functions possessing a unweighted or weighted Sobolev mixed smoothness based on their sampled values at a certain finite set. Some of them are extended to more general cases.
Thanks to the singularity of the solution of linear subdiffusion problems, most time-stepping methods on uniform meshes can result in $O(\tau)$ accuracy where $\tau$ denotes the time step. The present work aims to discover the reason why some type of Crank-Nicolson schemes (the averaging Crank-Nicolson scheme) for the subdiffusion can only yield $O(\tau^\alpha)$$(\alpha<1)$ accuracy, which is much lower than the desired. The existing well developed error analysis for the subdiffusion, which has been successfully applied to many time-stepping methods such as the fractional BDF-$p (1\leq p\leq 6)$, all requires singular points be out of the path of contour integrals involved. The averaging Crank-Nicolson scheme in this work is quite natural but fails to meet this requirement. By resorting to the residue theorem, some novel sharp error analysis is developed in this study, upon which correction methods are further designed to obtain the optimal $O(\tau^2)$ accuracy. All results are verified by numerical tests.
Implicit models for magnetic coenergy have been proposed by Pera et al. to describe the anisotropic nonlinear material behavior of electrical steel sheets. This approach aims at predicting magnetic response for any direction of excitation by interpolating measured of B--H curves in the rolling and transverse directions. In an analogous manner, an implicit model for magnetic energy is proposed. We highlight some mathematical properties of these implicit models and discuss their numerical realization, outline the computation of magnetic material laws via implicit differentiation, and discuss the potential use for finite element analysis in the context of nonlinear magnetostatics.
We study the canonical momentum based discretizations of a hybrid model with kinetic ions and mass-less electrons. Two equivalent formulations of the hybrid model are presented, in which the vector potentials are in different gauges and the distribution functions depend on canonical momentum (not velocity). Particle-in-cell methods are used for the distribution functions, and the vector potentials are discretized by the finite element methods in the framework of finite element exterior calculus. Splitting methods are used for the time discretizations. It is illustrated that the second formulation is numerically superior and the schemes constructed based on the anti-symmetric bracket proposed have better conservation properties, although the filters can be used to improve the schemes of the first formulation.
We propose a new framework for the simultaneous inference of monotone and smoothly time-varying functions under complex temporal dynamics utilizing the monotone rearrangement and the nonparametric estimation. We capitalize the Gaussian approximation for the nonparametric monotone estimator and construct the asymptotically correct simultaneous confidence bands (SCBs) by carefully designed bootstrap methods. We investigate two general and practical scenarios. The first is the simultaneous inference of monotone smooth trends from moderately high-dimensional time series, and the proposed algorithm has been employed for the joint inference of temperature curves from multiple areas. Specifically, most existing methods are designed for a single monotone smooth trend. In such cases, our proposed SCB empirically exhibits the narrowest width among existing approaches while maintaining confidence levels, and has been used for testing several hypotheses tailored to global warming. The second scenario involves simultaneous inference of monotone and smoothly time-varying regression coefficients in time-varying coefficient linear models. The proposed algorithm has been utilized for testing the impact of sunshine duration on temperature which is believed to be increasing by the increasingly severe greenhouse effect. The validity of the proposed methods has been justified in theory as well as by extensive simulations.
We propose a new method for the construction of layer-adapted meshes for singularly perturbed differential equations (SPDEs), based on mesh partial differential equations (MPDEs) that incorporate \emph{a posteriori} solution information. There are numerous studies on the development of parameter robust numerical methods for SPDEs that depend on the layer-adapted mesh of Bakhvalov. In~\citep{HiMa2021}, a novel MPDE-based approach for constructing a generalisation of these meshes was proposed. Like with most layer-adapted mesh methods, the algorithms in that article depended on detailed derivations of \emph{a priori} bounds on the SPDE's solution and its derivatives. In this work we extend that approach so that it instead uses \emph{a posteriori} computed estimates of the solution. We present detailed algorithms for the efficient implementation of the method, and numerical results for the robust solution of two-parameter reaction-convection-diffusion problems, in one and two dimensions. We also provide full FEniCS code for a one-dimensional example.
We propose to approximate a (possibly discontinuous) multivariate function f (x) on a compact set by the partial minimizer arg miny p(x, y) of an appropriate polynomial p whose construction can be cast in a univariate sum of squares (SOS) framework, resulting in a highly structured convex semidefinite program. In a number of non-trivial cases (e.g. when f is a piecewise polynomial) we prove that the approximation is exact with a low-degree polynomial p. Our approach has three distinguishing features: (i) It is mesh-free and does not require the knowledge of the discontinuity locations. (ii) It is model-free in the sense that we only assume that the function to be approximated is available through samples (point evaluations). (iii) The size of the semidefinite program is independent of the ambient dimension and depends linearly on the number of samples. We also analyze the sample complexity of the approach, proving a generalization error bound in a probabilistic setting. This allows for a comparison with machine learning approaches.
We propose a method to modify a polygonal mesh in order to fit the zero-isoline of a level set function by extending a standard body-fitted strategy to a tessellation with arbitrarily-shaped elements. The novel level set-fitted approach, in combination with a Discontinuous Galerkin finite element approximation, provides an ideal setting to model physical problems characterized by embedded or evolving complex geometries, since it allows skipping any mesh post-processing in terms of grid quality. The proposed methodology is firstly assessed on the linear elasticity equation, by verifying the approximation capability of the level set-fitted approach when dealing with configurations with heterogeneous material properties. Successively, we combine the level set-fitted methodology with a minimum compliance topology optimization technique, in order to deliver optimized layouts exhibiting crisp boundaries and reliable mechanical performances. An extensive numerical test campaign confirms the effectiveness of the proposed method.
Structured dense matrices result from boundary integral problems in electrostatics and geostatistics, and also Schur complements in sparse preconditioners such as multi-frontal methods. Exploiting the structure of such matrices can reduce the time for dense direct factorization from $O(N^3)$ to $O(N)$. The Hierarchically Semi-Separable (HSS) matrix is one such low rank matrix format that can be factorized using a Cholesky-like algorithm called ULV factorization. The HSS-ULV algorithm is highly parallel because it removes the dependency on trailing sub-matrices at each HSS level. However, a key merge step that links two successive HSS levels remains a challenge for efficient parallelization. In this paper, we use an asynchronous runtime system PaRSEC with the HSS-ULV algorithm. We compare our work with STRUMPACK and LORAPO, both state-of-the-art implementations of dense direct low rank factorization, and achieve up to 2x better factorization time for matrices arising from a diverse set of applications on up to 128 nodes of Fugaku for similar or better accuracy for all the problems that we survey.
We study Whitney-type estimates for approximation of convex functions in the uniform norm on various convex multivariate domains while paying a particular attention to the dependence of the involved constants on the dimension and the geometry of the domain.
This paper focuses on the construction of accurate and predictive data-driven reduced models of large-scale numerical simulations with complex dynamics and sparse training data sets. In these settings, standard, single-domain approaches may be too inaccurate or may overfit and hence generalize poorly. Moreover, processing large-scale data sets typically requires significant memory and computing resources which can render single-domain approaches computationally prohibitive. To address these challenges, we introduce a domain decomposition formulation into the construction of a data-driven reduced model. In doing so, the basis functions used in the reduced model approximation become localized in space, which can increase the accuracy of the domain-decomposed approximation of the complex dynamics. The decomposition furthermore reduces the memory and computing requirements to process the underlying large-scale training data set. We demonstrate the effectiveness and scalability of our approach in a large-scale three-dimensional unsteady rotating detonation rocket engine simulation scenario with over $75$ million degrees of freedom and a sparse training data set. Our results show that compared to the single-domain approach, the domain-decomposed version reduces both the training and prediction errors for pressure by up to $13 \%$ and up to $5\%$ for other key quantities, such as temperature, and fuel and oxidizer mass fractions. Lastly, our approach decreases the memory requirements for processing by almost a factor of four, which in turn reduces the computing requirements as well.