In recent years, audio-driven 3D facial animation has gained significant attention, particularly in applications such as virtual reality, gaming, and video conferencing. However, accurately modeling the intricate and subtle dynamics of facial expressions remains a challenge. Most existing studies approach the facial animation task as a single regression problem, which often fail to capture the intrinsic inter-modal relationship between speech signals and 3D facial animation and overlook their inherent consistency. Moreover, due to the limited availability of 3D-audio-visual datasets, approaches learning with small-size samples have poor generalizability that decreases the performance. To address these issues, in this study, we propose a cross-modal dual-learning framework, termed DualTalker, aiming at improving data usage efficiency as well as relating cross-modal dependencies. The framework is trained jointly with the primary task (audio-driven facial animation) and its dual task (lip reading) and shares common audio/motion encoder components. Our joint training framework facilitates more efficient data usage by leveraging information from both tasks and explicitly capitalizing on the complementary relationship between facial motion and audio to improve performance. Furthermore, we introduce an auxiliary cross-modal consistency loss to mitigate the potential over-smoothing underlying the cross-modal complementary representations, enhancing the mapping of subtle facial expression dynamics. Through extensive experiments and a perceptual user study conducted on the VOCA and BIWI datasets, we demonstrate that our approach outperforms current state-of-the-art methods both qualitatively and quantitatively. We have made our code and video demonstrations available at //github.com/sabrina-su/iadf.git.
As Large Language Models (LLMs) have made significant advancements across various tasks, such as question answering, translation, text summarization, and dialogue systems, the need for accuracy in information becomes crucial, especially for serious financial products serving billions of users like Alipay. To address this, Alipay has developed a Retrieval-Augmented Generation (RAG) system that grounds LLMs on the most accurate and up-to-date information. However, for a real-world product serving millions of users, the inference speed of LLMs becomes a critical factor compared to a mere experimental model. Hence, this paper presents a generic framework for accelerating the inference process, resulting in a substantial increase in speed and cost reduction for our RAG system, with lossless generation accuracy. In the traditional inference process, each token is generated sequentially by the LLM, leading to a time consumption proportional to the number of generated tokens. To enhance this process, our framework, named \textit{lookahead}, introduces a \textit{multi-branch} strategy. Instead of generating a single token at a time, we propose a \textit{Trie-based Retrieval} (TR) process that enables the generation of multiple branches simultaneously, each of which is a sequence of tokens. Subsequently, for each branch, a \textit{Verification and Accept} (VA) process is performed to identify the longest correct sub-sequence as the final output. Our strategy offers two distinct advantages: (1) it guarantees absolute correctness of the output, avoiding any approximation algorithms, and (2) the worst-case performance of our approach is equivalent to the conventional process. We conduct extensive experiments to demonstrate the significant improvements achieved by applying our inference acceleration framework. Code is avaliable: //github.com/alipay/PainlessInferenceAcceleration.
Most existing video diffusion models (VDMs) are limited to mere text conditions. Thereby, they are usually lacking in control over visual appearance and geometry structure of the generated videos. This work presents Moonshot, a new video generation model that conditions simultaneously on multimodal inputs of image and text. The model builts upon a core module, called multimodal video block (MVB), which consists of conventional spatialtemporal layers for representing video features, and a decoupled cross-attention layer to address image and text inputs for appearance conditioning. In addition, we carefully design the model architecture such that it can optionally integrate with pre-trained image ControlNet modules for geometry visual conditions, without needing of extra training overhead as opposed to prior methods. Experiments show that with versatile multimodal conditioning mechanisms, Moonshot demonstrates significant improvement on visual quality and temporal consistency compared to existing models. In addition, the model can be easily repurposed for a variety of generative applications, such as personalized video generation, image animation and video editing, unveiling its potential to serve as a fundamental architecture for controllable video generation. Models will be made public on //github.com/salesforce/LAVIS.
Online contextual reasoning and association across consecutive video frames are critical to perceive instances in visual tracking. However, most current top-performing trackers persistently lean on sparse temporal relationships between reference and search frames via an offline mode. Consequently, they can only interact independently within each image-pair and establish limited temporal correlations. To alleviate the above problem, we propose a simple, flexible and effective video-level tracking pipeline, named \textbf{ODTrack}, which densely associates the contextual relationships of video frames in an online token propagation manner. ODTrack receives video frames of arbitrary length to capture the spatio-temporal trajectory relationships of an instance, and compresses the discrimination features (localization information) of a target into a token sequence to achieve frame-to-frame association. This new solution brings the following benefits: 1) the purified token sequences can serve as prompts for the inference in the next video frame, whereby past information is leveraged to guide future inference; 2) the complex online update strategies are effectively avoided by the iterative propagation of token sequences, and thus we can achieve more efficient model representation and computation. ODTrack achieves a new \textit{SOTA} performance on seven benchmarks, while running at real-time speed. Code and models are available at \url{//github.com/GXNU-ZhongLab/ODTrack}.
Given a text query, partially relevant video retrieval (PRVR) seeks to find untrimmed videos containing pertinent moments in a database. For PRVR, clip modeling is essential to capture the partial relationship between texts and videos. Current PRVR methods adopt scanning-based clip construction to achieve explicit clip modeling, which is information-redundant and requires a large storage overhead. To solve the efficiency problem of PRVR methods, this paper proposes GMMFormer, a Gaussian-Mixture-Model based Transformer which models clip representations implicitly. During frame interactions, we incorporate Gaussian-Mixture-Model constraints to focus each frame on its adjacent frames instead of the whole video. Then generated representations will contain multi-scale clip information, achieving implicit clip modeling. In addition, PRVR methods ignore semantic differences between text queries relevant to the same video, leading to a sparse embedding space. We propose a query diverse loss to distinguish these text queries, making the embedding space more intensive and contain more semantic information. Extensive experiments on three large-scale video datasets (i.e., TVR, ActivityNet Captions, and Charades-STA) demonstrate the superiority and efficiency of GMMFormer. Code is available at \url{//github.com/huangmozhi9527/GMMFormer}.
Generating vivid and diverse 3D co-speech gestures is crucial for various applications in animating virtual avatars. While most existing methods can generate gestures from audio directly, they usually overlook that emotion is one of the key factors of authentic co-speech gesture generation. In this work, we propose EmotionGesture, a novel framework for synthesizing vivid and diverse emotional co-speech 3D gestures from audio. Considering emotion is often entangled with the rhythmic beat in speech audio, we first develop an Emotion-Beat Mining module (EBM) to extract the emotion and audio beat features as well as model their correlation via a transcript-based visual-rhythm alignment. Then, we propose an initial pose based Spatial-Temporal Prompter (STP) to generate future gestures from the given initial poses. STP effectively models the spatial-temporal correlations between the initial poses and the future gestures, thus producing the spatial-temporal coherent pose prompt. Once we obtain pose prompts, emotion, and audio beat features, we will generate 3D co-speech gestures through a transformer architecture. However, considering the poses of existing datasets often contain jittering effects, this would lead to generating unstable gestures. To address this issue, we propose an effective objective function, dubbed Motion-Smooth Loss. Specifically, we model motion offset to compensate for jittering ground-truth by forcing gestures to be smooth. Last, we present an emotion-conditioned VAE to sample emotion features, enabling us to generate diverse emotional results. Extensive experiments demonstrate that our framework outperforms the state-of-the-art, achieving vivid and diverse emotional co-speech 3D gestures. Our code and dataset will be released at the project page: //xingqunqi-lab.github.io/Emotion-Gesture-Web/
Reasoning over sports videos for question answering is an important task with numerous applications, such as player training and information retrieval. However, this task has not been explored due to the lack of relevant datasets and the challenging nature it presents. Most datasets for video question answering (VideoQA) focus mainly on general and coarse-grained understanding of daily-life videos, which is not applicable to sports scenarios requiring professional action understanding and fine-grained motion analysis. In this paper, we introduce the first dataset, named Sports-QA, specifically designed for the sports VideoQA task. The Sports-QA dataset includes various types of questions, such as descriptions, chronologies, causalities, and counterfactual conditions, covering multiple sports. Furthermore, to address the characteristics of the sports VideoQA task, we propose a new Auto-Focus Transformer (AFT) capable of automatically focusing on particular scales of temporal information for question answering. We conduct extensive experiments on Sports-QA, including baseline studies and the evaluation of different methods. The results demonstrate that our AFT achieves state-of-the-art performance.
Learned video compression methods have gained a variety of interest in the video coding community since they have matched or even exceeded the rate-distortion (RD) performance of traditional video codecs. However, many current learning-based methods are dedicated to utilizing short-range temporal information, thus limiting their performance. In this paper, we focus on exploiting the unique characteristics of video content and further exploring temporal information to enhance compression performance. Specifically, for long-range temporal information exploitation, we propose temporal prior that can update continuously within the group of pictures (GOP) during inference. In that case temporal prior contains valuable temporal information of all decoded images within the current GOP. As for short-range temporal information, we propose a progressive guided motion compensation to achieve robust and effective compensation. In detail, we design a hierarchical structure to achieve multi-scale compensation. More importantly, we use optical flow guidance to generate pixel offsets between feature maps at each scale, and the compensation results at each scale will be used to guide the following scale's compensation. Sufficient experimental results demonstrate that our method can obtain better RD performance than state-of-the-art video compression approaches. The code is publicly available on: //github.com/Huairui/LSTVC.
Estimating the 6D object pose from a single RGB image often involves noise and indeterminacy due to challenges such as occlusions and cluttered backgrounds. Meanwhile, diffusion models have shown appealing performance in generating high-quality images from random noise with high indeterminacy through step-by-step denoising. Inspired by their denoising capability, we propose a novel diffusion-based framework (6D-Diff) to handle the noise and indeterminacy in object pose estimation for better performance. In our framework, to establish accurate 2D-3D correspondence, we formulate 2D keypoints detection as a reverse diffusion (denoising) process. To facilitate such a denoising process, we design a Mixture-of-Cauchy-based forward diffusion process and condition the reverse process on the object features. Extensive experiments on the LM-O and YCB-V datasets demonstrate the effectiveness of our framework.
Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.
Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.