We explore the potential of Time-Bin Conference Key Agreement (TB CKA) protocol as a means to achieve consensus among multiple parties. We provide an explanation of the underlying physical implementation, i.e. TB CKA fundamentals and illustrate how this process can be seen as a natural realization of the global common coin primitive. Next, we present how TB CKA could be embodied in classical consensus algorithms to create hybrid classical-quantum solutions to the Byzantine Agreement problem.
Linear Discriminant Analysis (LDA) is one of the oldest and most popular linear methods for supervised classification problems. In this paper, we demonstrate that it is possible to compute the exact projection vector from LDA models based on unlabelled data, if some minimal prior information is available. More precisely, we show that only one of the following three pieces of information is actually sufficient to compute the LDA projection vector if only unlabelled data are available: (1) the class average of one of the two classes, (2) the difference between both class averages (up to a scaling), or (3) the class covariance matrices (up to a scaling). These theoretical results are validated in numerical experiments, demonstrating that this minimally informed Linear Discriminant Analysis (MILDA) model closely matches the performance of a supervised LDA model. Furthermore, we show that the MILDA projection vector can be computed in a closed form with a computational cost comparable to LDA and is able to quickly adapt to non-stationary data, making it well-suited to use as an adaptive classifier.
Over the past two decades, some scholars have noticed the correlation between quantum mechanics and finance/economy, making some novel attempts to introduce the theoretical framework of quantum mechanics into financial and economic research, subsequently a new research domain called quantum finance or quantum economy was set up. In particular, some studies have made their endeavour in the stock market, utilizing the quantum mechanical paradigm to describe the movement of stock price. Nevertheless, the majority of researches have paid attention to describing the motion of a single stock, and drawn an analogy between the motion of a single stock and a one-dimensional infinite well, or one-dimensional harmonic oscillator model, whose modality looks alike to the one-electron Schr\"odinger equation, in which the information is solved analytically in most cases. Hitherto, the whole stock market system composed of all stocks and stock indexes have not been discussed. In this paper, the concept of stock molecular system is first proposed with pioneer. The modality of stock molecular system resembles the multi-electrons Schr\"odinger equation with Born-Oppenheimer approximation. Similar to the interaction among all nuclei and electrons in a molecule, the interaction exist among all stock indexes and stocks. This paper also establish the stock-index Coulomb potential, stock-index Coulomb potential, stock-stock Coulomb potential and stock coulomb correlation terms by statistical theory. At length, the conceive and feasibility of drawing upon density functional theory (DFT) to solve the Schr\"odinger equation of stock molecular system are put forward together with proof, ending up with experiments executed in CSI 300 index system.
We propose Re-parameterized Refocusing Convolution (RefConv) as a replacement for regular convolutional layers, which is a plug-and-play module to improve the performance without any inference costs. Specifically, given a pre-trained model, RefConv applies a trainable Refocusing Transformation to the basis kernels inherited from the pre-trained model to establish connections among the parameters. For example, a depth-wise RefConv can relate the parameters of a specific channel of convolution kernel to the parameters of the other kernel, i.e., make them refocus on the other parts of the model they have never attended to, rather than focus on the input features only. From another perspective, RefConv augments the priors of existing model structures by utilizing the representations encoded in the pre-trained parameters as the priors and refocusing on them to learn novel representations, thus further enhancing the representational capacity of the pre-trained model. Experimental results validated that RefConv can improve multiple CNN-based models by a clear margin on image classification (up to 1.47% higher top-1 accuracy on ImageNet), object detection and semantic segmentation without introducing any extra inference costs or altering the original model structure. Further studies demonstrated that RefConv can reduce the redundancy of channels and smooth the loss landscape, which explains its effectiveness.
The embedding of Biomedical Knowledge Graphs (BKGs) generates robust representations, valuable for a variety of artificial intelligence applications, including predicting drug combinations and reasoning disease-drug relationships. Meanwhile, contrastive learning (CL) is widely employed to enhance the distinctiveness of these representations. However, constructing suitable contrastive pairs for CL, especially within Knowledge Graphs (KGs), has been challenging. In this paper, we proposed a novel node-based contrastive learning method for knowledge graph embedding, NC-KGE. NC-KGE enhances knowledge extraction in embeddings and speeds up training convergence by constructing appropriate contrastive node pairs on KGs. This scheme can be easily integrated with other knowledge graph embedding (KGE) methods. For downstream task such as biochemical relationship prediction, we have incorporated a relation-aware attention mechanism into NC-KGE, focusing on the semantic relationships and node interactions. Extensive experiments show that NC-KGE performs competitively with state-of-the-art models on public datasets like FB15k-237 and WN18RR. Particularly in biomedical relationship prediction tasks, NC-KGE outperforms all baselines on datasets such as PharmKG8k-28, DRKG17k-21, and BioKG72k-14, especially in predicting drug combination relationships. We release our code at //github.com/zhi520/NC-KGE.
The Na\"ive Mean Field (NMF) approximation is widely employed in modern Machine Learning due to the huge computational gains it bestows on the statistician. Despite its popularity in practice, theoretical guarantees for high-dimensional problems are only available under strong structural assumptions (e.g., sparsity). Moreover, existing theory often does not explain empirical observations noted in the existing literature. In this paper, we take a step towards addressing these problems by deriving sharp asymptotic characterizations for the NMF approximation in high-dimensional linear regression. Our results apply to a wide class of natural priors and allow for model mismatch (i.e., the underlying statistical model can be different from the fitted model). We work under an \textit{iid} Gaussian design and the proportional asymptotic regime, where the number of features and the number of observations grow at a proportional rate. As a consequence of our asymptotic characterization, we establish two concrete corollaries: (a) we establish the inaccuracy of the NMF approximation for the log-normalizing constant in this regime, and (b) we provide theoretical results backing the empirical observation that the NMF approximation can be overconfident in terms of uncertainty quantification. Our results utilize recent advances in the theory of Gaussian comparison inequalities. To the best of our knowledge, this is the first application of these ideas to the analysis of Bayesian variational inference problems. Our theoretical results are corroborated by numerical experiments. Lastly, we believe our results can be generalized to non-Gaussian designs and provide empirical evidence to support it.
We numerically investigate the possibility of defining stabilization-free Virtual Element (VEM) discretizations of advection-diffusion problems in the advection-dominated regime. To this end, we consider a SUPG stabilized formulation of the scheme. Numerical tests comparing the proposed method with standard VEM show that the lack of an additional arbitrary stabilization term, typical of VEM schemes, that adds artificial diffusion to the discrete solution, allows to better approximate boundary layers, in particular in the case of a low order scheme.
Graph Convolution Networks (GCNs) manifest great potential in recommendation. This is attributed to their capability on learning good user and item embeddings by exploiting the collaborative signals from the high-order neighbors. Like other GCN models, the GCN based recommendation models also suffer from the notorious over-smoothing problem - when stacking more layers, node embeddings become more similar and eventually indistinguishable, resulted in performance degradation. The recently proposed LightGCN and LR-GCN alleviate this problem to some extent, however, we argue that they overlook an important factor for the over-smoothing problem in recommendation, that is, high-order neighboring users with no common interests of a user can be also involved in the user's embedding learning in the graph convolution operation. As a result, the multi-layer graph convolution will make users with dissimilar interests have similar embeddings. In this paper, we propose a novel Interest-aware Message-Passing GCN (IMP-GCN) recommendation model, which performs high-order graph convolution inside subgraphs. The subgraph consists of users with similar interests and their interacted items. To form the subgraphs, we design an unsupervised subgraph generation module, which can effectively identify users with common interests by exploiting both user feature and graph structure. To this end, our model can avoid propagating negative information from high-order neighbors into embedding learning. Experimental results on three large-scale benchmark datasets show that our model can gain performance improvement by stacking more layers and outperform the state-of-the-art GCN-based recommendation models significantly.
Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.
Recommender systems are widely used in big information-based companies such as Google, Twitter, LinkedIn, and Netflix. A recommender system deals with the problem of information overload by filtering important information fragments according to users' preferences. In light of the increasing success of deep learning, recent studies have proved the benefits of using deep learning in various recommendation tasks. However, most proposed techniques only aim to target individuals, which cannot be efficiently applied in group recommendation. In this paper, we propose a deep learning architecture to solve the group recommendation problem. On the one hand, as different individual preferences in a group necessitate preference trade-offs in making group recommendations, it is essential that the recommendation model can discover substitutes among user behaviors. On the other hand, it has been observed that a user as an individual and as a group member behaves differently. To tackle such problems, we propose using an attention mechanism to capture the impact of each user in a group. Specifically, our model automatically learns the influence weight of each user in a group and recommends items to the group based on its members' weighted preferences. We conduct extensive experiments on four datasets. Our model significantly outperforms baseline methods and shows promising results in applying deep learning to the group recommendation problem.
Attention mechanism has been used as an ancillary means to help RNN or CNN. However, the Transformer (Vaswani et al., 2017) recently recorded the state-of-the-art performance in machine translation with a dramatic reduction in training time by solely using attention. Motivated by the Transformer, Directional Self Attention Network (Shen et al., 2017), a fully attention-based sentence encoder, was proposed. It showed good performance with various data by using forward and backward directional information in a sentence. But in their study, not considered at all was the distance between words, an important feature when learning the local dependency to help understand the context of input text. We propose Distance-based Self-Attention Network, which considers the word distance by using a simple distance mask in order to model the local dependency without losing the ability of modeling global dependency which attention has inherent. Our model shows good performance with NLI data, and it records the new state-of-the-art result with SNLI data. Additionally, we show that our model has a strength in long sentences or documents.