Clustering has become a core technology in machine learning, largely due to its application in the field of unsupervised learning, clustering, classification, and density estimation. A frequentist approach exists to hand clustering based on mixture model which is known as the EM algorithm where the parameters of the mixture model are usually estimated into a maximum likelihood estimation framework. Bayesian approach for finite and infinite Gaussian mixture model generates point estimates for all variables as well as associated uncertainty in the form of the whole estimates' posterior distribution. The sole aim of this survey is to give a self-contained introduction to concepts and mathematical tools in Bayesian inference for finite and infinite Gaussian mixture model in order to seamlessly introduce their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning this field and given the paucity of scope to present this discussion, e.g., the separated analysis of the generation of Dirichlet samples by stick-breaking and Polya's Urn approaches. We refer the reader to literature in the field of the Dirichlet process mixture model for a much detailed introduction to the related fields. Some excellent examples include (Frigyik et al., 2010; Murphy, 2012; Gelman et al., 2014; Hoff, 2009). This survey is primarily a summary of purpose, significance of important background and techniques for Gaussian mixture model, e.g., Dirichlet prior, Chinese restaurant process, and most importantly the origin and complexity of the methods which shed light on their modern applications. The mathematical prerequisite is a first course in probability. Other than this modest background, the development is self-contained, with rigorous proofs provided throughout.
This paper addresses the problem of full model estimation for non-parametric finite mixture models. It presents an approach for selecting the number of components and the subset of discriminative variables (i.e., the subset of variables having different distributions among the mixture components). The proposed approach considers a discretization of each variable into B bins and a penalization of the resulting log-likelihood. Considering that the number of bins tends to infinity as the sample size tends to infinity, we prove that our estimator of the model (number of components and subset of relevant variables for clustering) is consistent under a suitable choice of the penalty term. Interest of our proposal is illustrated on simulated and benchmark data.
Spatial small area estimation models have become very popular in some contexts, such as disease mapping. Data in disease mapping studies are exhaustive, that is, the available data are supposed to be a complete register of all the observable events. In contrast, some other small area studies do not use exhaustive data, such as survey based studies, where a particular sampling design is typically followed and inferences are later extrapolated to the entire population. In this paper we propose a spatial model for small area survey studies, taking advantage of spatial dependence between units, which is the key assumption used for yielding reliable estimates in exhaustive data based studies. In addition, and in contrast to most spatial survey studies, we take the approach of also considering information on the sampling design and additional supplementary variables in order to yield small area estimates. This makes it possible to merge spatial and sampling based approaches into a common proposal
Bayesian hierarchical mixture clustering (BHMC) is an interesting model that improves on the traditional Bayesian hierarchical clustering approaches. Regarding the parent-to-node diffusion in the generative process, BHMC replaces the conventional Gaussian-to-Gaussian (G2G) kernels with a Hierarchical Dirichlet Process Mixture Model (HDPMM). However, the drawback of the BHMC lies in that it might obtain comparatively high nodal variance in the higher levels (i.e., those closer to the root node). This can be interpreted as that the separation between the nodes, in particular those in the higher levels, might be weak. Attempting to overcome this drawback, we consider a recent inferential framework named posterior regularization, which facilitates a simple manner to impose extra constraints on a Bayesian model to address some weakness of the original model. Hence, to enhance the separation of clusters, we apply posterior regularization to impose max-margin constraints on the nodes at every level of the hierarchy. In this paper, we illustrate how the framework integrates with the BHMC and achieves the desired improvements over the original model.
Physically-inspired latent force models offer an interpretable alternative to purely data driven tools for inference in dynamical systems. They carry the structure of differential equations and the flexibility of Gaussian processes, yielding interpretable parameters and dynamics-imposed latent functions. However, the existing inference techniques associated with these models rely on the exact computation of posterior kernel terms which are seldom available in analytical form. Most applications relevant to practitioners, such as Hill equations or diffusion equations, are hence intractable. In this paper, we overcome these computational problems by proposing a variational solution to a general class of non-linear and parabolic partial differential equation latent force models. Further, we show that a neural operator approach can scale our model to thousands of instances, enabling fast, distributed computation. We demonstrate the efficacy and flexibility of our framework by achieving competitive performance on several tasks where the kernels are of varying degrees of tractability.
Efficient Bayesian inference remains a computational challenge in hierarchical models. Simulation-based approaches such as Markov Chain Monte Carlo methods are still popular but have a large computational cost. When dealing with the large class of Latent Gaussian Models, the INLA methodology embedded in the R-INLA software provides accurate Bayesian inference by computing deterministic mixture representation to approximate the joint posterior, from which marginals are computed. The INLA approach has from the beginning been targeting to approximate univariate posteriors. In this paper we lay out the development foundation of the tools for also providing joint approximations for subsets of the latent field. These approximations inherit Gaussian copula structure and additionally provide corrections for skewness. The same idea is carried forward also to sampling from the mixture representation, which we now can adjust for skewness.
The Gaussian-smoothed optimal transport (GOT) framework, pioneered in Goldfeld et al. (2020) and followed up by a series of subsequent papers, has quickly caught attention among researchers in statistics, machine learning, information theory, and related fields. One key observation made therein is that, by adapting to the GOT framework instead of its unsmoothed counterpart, the curse of dimensionality for using the empirical measure to approximate the true data generating distribution can be lifted. The current paper shows that a related observation applies to the estimation of nonparametric mixing distributions in discrete exponential family models, where under the GOT cost the estimation accuracy of the nonparametric MLE can be accelerated to a polynomial rate. This is in sharp contrast to the classical sub-polynomial rates based on unsmoothed metrics, which cannot be improved from an information-theoretical perspective. A key step in our analysis is the establishment of a new Jackson-type approximation bound of Gaussian-convoluted Lipschitz functions. This insight bridges existing techniques of analyzing the nonparametric MLEs and the new GOT framework.
Multi-Task Learning (MTL) is a learning paradigm in machine learning and its aim is to leverage useful information contained in multiple related tasks to help improve the generalization performance of all the tasks. In this paper, we give a survey for MTL from the perspective of algorithmic modeling, applications and theoretical analyses. For algorithmic modeling, we give a definition of MTL and then classify different MTL algorithms into five categories, including feature learning approach, low-rank approach, task clustering approach, task relation learning approach and decomposition approach as well as discussing the characteristics of each approach. In order to improve the performance of learning tasks further, MTL can be combined with other learning paradigms including semi-supervised learning, active learning, unsupervised learning, reinforcement learning, multi-view learning and graphical models. When the number of tasks is large or the data dimensionality is high, we review online, parallel and distributed MTL models as well as dimensionality reduction and feature hashing to reveal their computational and storage advantages. Many real-world applications use MTL to boost their performance and we review representative works in this paper. Finally, we present theoretical analyses and discuss several future directions for MTL.
A comprehensive artificial intelligence system needs to not only perceive the environment with different `senses' (e.g., seeing and hearing) but also infer the world's conditional (or even causal) relations and corresponding uncertainty. The past decade has seen major advances in many perception tasks such as visual object recognition and speech recognition using deep learning models. For higher-level inference, however, probabilistic graphical models with their Bayesian nature are still more powerful and flexible. In recent years, Bayesian deep learning has emerged as a unified probabilistic framework to tightly integrate deep learning and Bayesian models. In this general framework, the perception of text or images using deep learning can boost the performance of higher-level inference and in turn, the feedback from the inference process is able to enhance the perception of text or images. This survey provides a comprehensive introduction to Bayesian deep learning and reviews its recent applications on recommender systems, topic models, control, etc. Besides, we also discuss the relationship and differences between Bayesian deep learning and other related topics such as Bayesian treatment of neural networks.
Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well known causal inference framework. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.