Advancements in conversational systems have revolutionized information access, surpassing the limitations of single queries. However, developing dialogue systems requires a large amount of training data, which is a challenge in low-resource domains and languages. Traditional data collection methods like crowd-sourcing are labor-intensive and time-consuming, making them ineffective in this context. Data augmentation (DA) is an affective approach to alleviate the data scarcity problem in conversational systems. This tutorial provides a comprehensive and up-to-date overview of DA approaches in the context of conversational systems. It highlights recent advances in conversation augmentation, open domain and task-oriented conversation generation, and different paradigms of evaluating these models. We also discuss current challenges and future directions in order to help researchers and practitioners to further advance the field in this area.
Based on tensor neural network, we propose an interpolation method for high dimensional non-tensor-product-type functions. This interpolation scheme is designed by using the tensor neural network based machine learning method. This means that we use a tensor neural network to approximate high dimensional functions which has no tensor product structure. In some sense, the non-tenor-product-type high dimensional function is transformed to the tensor neural network which has tensor product structure. It is well known that the tensor product structure can bring the possibility to design highly accurate and efficient numerical methods for dealing with high dimensional functions. In this paper, we will concentrate on computing the high dimensional integrations and solving high dimensional partial differential equations. The corresponding numerical methods and numerical examples will be provided to validate the proposed tensor neural network interpolation.
With the advent of machine learning, there have been several recent attempts to learn effective and generalizable heuristics. Local Heuristic A* (LoHA*) is one recent method that instead of learning the entire heuristic estimate, learns a "local" residual heuristic that estimates the cost to escape a region (Veerapaneni et al 2023). LoHA*, like other supervised learning methods, collects a dataset of target values by querying an oracle on many planning problems (in this case, local planning problems). This data collection process can become slow as the size of the local region increases or if the domain requires expensive collision checks. Our main insight is that when an A* search solves a start-goal planning problem it inherently ends up solving multiple local planning problems. We exploit this observation to propose an efficient data collection framework that does <1/10th the amount of work (measured by expansions) to collect the same amount of data in comparison to baselines. This idea also enables us to run LoHA* in an online manner where we can iteratively collect data and improve our model while solving relevant start-goal tasks. We demonstrate the performance of our data collection and online framework on a 4D $(x, y, \theta, v)$ navigation domain.
Unobserved confounding is common in many applications, making causal inference from observational data challenging. As a remedy, causal sensitivity analysis is an important tool to draw causal conclusions under unobserved confounding with mathematical guarantees. In this paper, we propose NeuralCSA, a neural framework for generalized causal sensitivity analysis. Unlike previous work, our framework is compatible with (i) a large class of sensitivity models, including the marginal sensitivity model, f-sensitivity models, and Rosenbaum's sensitivity model; (ii) different treatment types (i.e., binary and continuous); and (iii) different causal queries, including (conditional) average treatment effects and simultaneous effects on multiple outcomes. The generality of NeuralCSA is achieved by learning a latent distribution shift that corresponds to a treatment intervention using two conditional normalizing flows. We provide theoretical guarantees that NeuralCSA is able to infer valid bounds on the causal query of interest and also demonstrate this empirically using both simulated and real-world data.
Hierarchical topological representations can significantly reduce search times within mapping and localization algorithms. Although recent research has shown the potential for such approaches, limited consideration has been given to the suitability and comparative performance of different global feature representations within this context. In this work, we evaluate state-of-the-art hand-crafted and learned global descriptors using a hierarchical topological mapping technique on benchmark datasets and present results of a comprehensive evaluation of the impact of the global descriptor used. Although learned descriptors have been incorporated into place recognition methods to improve retrieval accuracy and enhance overall recall, the problem of scalability and efficiency when applied to longer trajectories has not been adequately addressed in a majority of research studies. Based on our empirical analysis of multiple runs, we identify that continuity and distinctiveness are crucial characteristics for an optimal global descriptor that enable efficient and scalable hierarchical mapping, and present a methodology for quantifying and contrasting these characteristics across different global descriptors. Our study demonstrates that the use of global descriptors based on an unsupervised learned Variational Autoencoder (VAE) excels in these characteristics and achieves significantly lower runtime. It runs on a consumer grade desktop, up to 2.3x faster than the second best global descriptor, NetVLAD, and up to 9.5x faster than the hand-crafted descriptor, PHOG, on the longest track evaluated (St Lucia, 17.6 km), without sacrificing overall recall performance.
We design, to the best of our knowledge, the first differentially private (DP) stream aggregation processing system at scale. Our system -- Differential Privacy SQL Pipelines (DP-SQLP) -- is built using a streaming framework similar to Spark streaming, and is built on top of the Spanner database and the F1 query engine from Google. Towards designing DP-SQLP we make both algorithmic and systemic advances, namely, we (i) design a novel (user-level) DP key selection algorithm that can operate on an unbounded set of possible keys, and can scale to one billion keys that users have contributed, (ii) design a preemptive execution scheme for DP key selection that avoids enumerating all the keys at each triggering time, and (iii) use algorithmic techniques from DP continual observation to release a continual DP histogram of user contributions to different keys over the stream length. We empirically demonstrate the efficacy by obtaining at least $16\times$ reduction in error over meaningful baselines we consider. We implemented a streaming differentially private user impressions for Google Shopping with DP-SQLP. The streaming DP algorithms are further applied to Google Trends.
The credibility revolution advances the use of research designs that permit identification and estimation of causal effects. However, understanding which mechanisms produce measured causal effects remains a challenge. A dominant current approach to the quantitative evaluation of mechanisms relies on the detection of heterogeneous treatment effects with respect to pre-treatment covariates. This paper develops a framework to understand when the existence of such heterogeneous treatment effects can support inferences about the activation of a mechanism. We show first that this design cannot provide evidence of mechanism activation without additional, generally implicit, assumptions. Further, even when these assumptions are satisfied, if a measured outcome is produced by a non-linear transformation of a directly-affected outcome of theoretical interest, heterogeneous treatment effects are not informative of mechanism activation. We provide novel guidance for interpretation and research design in light of these findings.
In the rapidly advancing field of multi-agent systems, ensuring robustness in unfamiliar and adversarial settings is crucial. Notwithstanding their outstanding performance in familiar environments, these systems often falter in new situations due to overfitting during the training phase. This is especially pronounced in settings where both cooperative and competitive behaviours are present, encapsulating a dual nature of overfitting and generalisation challenges. To address this issue, we present Multi-Agent Diagnostics for Robustness via Illuminated Diversity (MADRID), a novel approach for generating diverse adversarial scenarios that expose strategic vulnerabilities in pre-trained multi-agent policies. Leveraging the concepts from open-ended learning, MADRID navigates the vast space of adversarial settings, employing a target policy's regret to gauge the vulnerabilities of these settings. We evaluate the effectiveness of MADRID on the 11vs11 version of Google Research Football, one of the most complex environments for multi-agent reinforcement learning. Specifically, we employ MADRID for generating a diverse array of adversarial settings for TiZero, the state-of-the-art approach which "masters" the game through 45 days of training on a large-scale distributed infrastructure. We expose key shortcomings in TiZero's tactical decision-making, underlining the crucial importance of rigorous evaluation in multi-agent systems.
Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.
The present paper surveys neural approaches to conversational AI that have been developed in the last few years. We group conversational systems into three categories: (1) question answering agents, (2) task-oriented dialogue agents, and (3) chatbots. For each category, we present a review of state-of-the-art neural approaches, draw the connection between them and traditional approaches, and discuss the progress that has been made and challenges still being faced, using specific systems and models as case studies.
Learning from a few examples remains a key challenge in machine learning. Despite recent advances in important domains such as vision and language, the standard supervised deep learning paradigm does not offer a satisfactory solution for learning new concepts rapidly from little data. In this work, we employ ideas from metric learning based on deep neural features and from recent advances that augment neural networks with external memories. Our framework learns a network that maps a small labelled support set and an unlabelled example to its label, obviating the need for fine-tuning to adapt to new class types. We then define one-shot learning problems on vision (using Omniglot, ImageNet) and language tasks. Our algorithm improves one-shot accuracy on ImageNet from 87.6% to 93.2% and from 88.0% to 93.8% on Omniglot compared to competing approaches. We also demonstrate the usefulness of the same model on language modeling by introducing a one-shot task on the Penn Treebank.