Stein's unbiased risk estimate (SURE) gives an unbiased estimate of the $\ell_2$ risk of any estimator of the mean of a Gaussian random vector. We focus here on the case when the estimator minimizes a quadratic loss term plus a convex regularizer. For these estimators SURE can be evaluated analytically for a few special cases, and generically using recently developed general purpose methods for differentiating through convex optimization problems; these generic methods however do not scale to large problems. In this paper we describe methods for evaluating SURE that handle a wide class of estimators, and also scale to large problem sizes.
Choral singing, a widely practiced form of ensemble singing, lacks comprehensive datasets in the realm of Music Information Retrieval (MIR) research, due to challenges arising from the requirement to curate multitrack recordings. To address this, we devised a novel methodology, leveraging state-of-the-art synthesizers to create and curate quality renditions. The scores were sourced from Choral Public Domain Library(CPDL). This work is done in collaboration with a diverse team of musicians, software engineers and researchers. The resulting dataset, complete with its associated metadata, and methodology is released as part of this work, opening up new avenues for exploration and advancement in the field of singing voice research.
Iris recognition systems, operating in the near infrared spectrum (NIR), have demonstrated vulnerability to presentation attacks, where an adversary uses artifacts such as cosmetic contact lenses, artificial eyes or printed iris images in order to circumvent the system. At the same time, a number of effective presentation attack detection (PAD) methods have been developed. These methods have demonstrated success in detecting artificial eyes (e.g., fake Van Dyke eyes) as presentation attacks. In this work, we seek to alter the optical characteristics of artificial eyes by affixing Vanadium Dioxide (VO2) films on their surface in various spatial configurations. VO2 films can be used to selectively transmit NIR light and can, therefore, be used to regulate the amount of NIR light from the object that is captured by the iris sensor. We study the impact of such images produced by the sensor on two state-of-the-art iris PA detection methods. We observe that the addition of VO2 films on the surface of artificial eyes can cause the PA detection methods to misclassify them as bonafide eyes in some cases. This represents a vulnerability that must be systematically analyzed and effectively addressed.
Categorical random variables can faithfully represent the discrete and uncertain aspects of data as part of a discrete latent variable model. Learning in such models necessitates taking gradients with respect to the parameters of the categorical probability distributions, which is often intractable due to their combinatorial nature. A popular technique to estimate these otherwise intractable gradients is the Log-Derivative trick. This trick forms the basis of the well-known REINFORCE gradient estimator and its many extensions. While the Log-Derivative trick allows us to differentiate through samples drawn from categorical distributions, it does not take into account the discrete nature of the distribution itself. Our first contribution addresses this shortcoming by introducing the CatLog-Derivative trick - a variation of the Log-Derivative trick tailored towards categorical distributions. Secondly, we use the CatLog-Derivative trick to introduce IndeCateR, a novel and unbiased gradient estimator for the important case of products of independent categorical distributions with provably lower variance than REINFORCE. Thirdly, we empirically show that IndeCateR can be efficiently implemented and that its gradient estimates have significantly lower bias and variance for the same number of samples compared to the state of the art.
Large Language Models (LLMs) have proven effective at In-Context Learning (ICL), an ability that allows them to create predictors from labeled examples. Few studies have explored the interplay between ICL and specific properties of functions it attempts to approximate. In our study, we use a formal framework to explore ICL and propose a new task of approximating functions with varying number of minima. We implement a method that allows for producing functions with given inputs as minima. We find that increasing the number of minima degrades ICL performance. At the same time, our evaluation shows that ICL outperforms 2-layer Neural Network (2NN) model. Furthermore, ICL learns faster than 2NN in all settings. We validate the findings through a set of few-shot experiments across various hyperparameter configurations.
Combinatorial optimization (CO) problems are often NP-hard and thus out of reach for exact algorithms, making them a tempting domain to apply machine learning methods. The highly structured constraints in these problems can hinder either optimization or sampling directly in the solution space. On the other hand, GFlowNets have recently emerged as a powerful machinery to efficiently sample from composite unnormalized densities sequentially and have the potential to amortize such solution-searching processes in CO, as well as generate diverse solution candidates. In this paper, we design Markov decision processes (MDPs) for different combinatorial problems and propose to train conditional GFlowNets to sample from the solution space. Efficient training techniques are also developed to benefit long-range credit assignment. Through extensive experiments on a variety of different CO tasks with synthetic and realistic data, we demonstrate that GFlowNet policies can efficiently find high-quality solutions. Our implementation is open-sourced at //github.com/zdhNarsil/GFlowNet-CombOpt.
Spiking Neural Networks (SNNs), a novel brain-inspired algorithm, are garnering increased attention for their superior computation and energy efficiency over traditional artificial neural networks (ANNs). To facilitate deployment on memory-constrained devices, numerous studies have explored SNN pruning. However, these efforts are hindered by challenges such as scalability challenges in more complex architectures and accuracy degradation. Amidst these challenges, the Lottery Ticket Hypothesis (LTH) emerges as a promising pruning strategy. It posits that within dense neural networks, there exist winning tickets or subnetworks that are sparser but do not compromise performance. To explore a more structure-sparse and energy-saving model, we investigate the unique synergy of SNNs with LTH and design two novel spiking winning tickets to push the boundaries of sparsity within SNNs. Furthermore, we introduce an innovative algorithm capable of simultaneously identifying both weight and patch-level winning tickets, enabling the achievement of sparser structures without compromising on the final model's performance. Through comprehensive experiments on both RGB-based and event-based datasets, we demonstrate that our spiking lottery ticket achieves comparable or superior performance even when the model structure is extremely sparse.
We consider the problem of linear estimation, and establish an extension of the Gauss-Markov theorem, in which the bias operator is allowed to be non-zero but bounded with respect to a matrix norm of Schatten type. We derive simple and explicit formulas for the optimal estimator in the cases of Nuclear and Spectral norms (with the Frobenius case recovering ridge regression). Additionally, we analytically derive the generalization error in multiple random matrix ensembles, and compare with Ridge regression. Finally, we conduct an extensive simulation study, in which we show that the cross-validated Nuclear and Spectral regressors can outperform Ridge in several circumstances.
We devise a polynomial-time algorithm for partitioning a simple polygon $P$ into a minimum number of star-shaped polygons. The question of whether such an algorithm exists has been open for more than four decades [Avis and Toussaint, Pattern Recognit., 1981] and it has been repeated frequently, for example in O'Rourke's famous book [Art Gallery Theorems and Algorithms, 1987]. In addition to its strong theoretical motivation, the problem is also motivated by practical domains such as CNC pocket milling, motion planning, and shape parameterization. The only previously known algorithm for a non-trivial special case is for $P$ being both monotone and rectilinear [Liu and Ntafos, Algorithmica, 1991]. For general polygons, an algorithm was only known for the restricted version in which Steiner points are disallowed [Keil, SIAM J. Comput., 1985], meaning that each corner of a piece in the partition must also be a corner of $P$. Interestingly, the solution size for the restricted version may be linear for instances where the unrestricted solution has constant size. The covering variant in which the pieces are star-shaped but allowed to overlap--known as the Art Gallery Problem--was recently shown to be $\exists\mathbb R$-complete and is thus likely not in NP [Abrahamsen, Adamaszek and Miltzow, STOC 2018 & J. ACM 2022]; this is in stark contrast to our result. Arguably the most related work to ours is the polynomial-time algorithm to partition a simple polygon into a minimum number of convex pieces by Chazelle and Dobkin~[STOC, 1979 & Comp. Geom., 1985].
Topic modeling and text mining are subsets of Natural Language Processing (NLP) with relevance for conducting meta-analysis (MA) and systematic review (SR). For evidence synthesis, the above NLP methods are conventionally used for topic-specific literature searches or extracting values from reports to automate essential phases of SR and MA. Instead, this work proposes a comparative topic modeling approach to analyze reports of contradictory results on the same general research question. Specifically, the objective is to identify topics exhibiting distinct associations with significant results for an outcome of interest by ranking them according to their proportional occurrence in (and consistency of distribution across) reports of significant effects. The proposed method was tested on broad-scope studies addressing whether supplemental nutritional compounds significantly benefit macular degeneration (MD). Four of these were further supported in terms of effectiveness upon conducting a follow-up literature search for validation (omega-3 fatty acids, copper, zeaxanthin, and nitrates). The two not supported by the follow-up literature search (niacin and molybdenum) also had scores in the lowest range under the proposed scoring system, suggesting that the proposed methods score for a given topic may be a viable proxy for its degree of association with the outcome of interest and can be helpful in the search for potentially causal relationships. These results underpin the proposed methods potential to add specificity in understanding effects from broad-scope reports, elucidate topics of interest for future research, and guide evidence synthesis in a systematic and scalable way. All of this is accomplished while yielding valuable insights into the prevention of MD.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.