Mapping agencies are increasingly adopting Aerial Lidar Scanning (ALS) as a new tool to monitor territory and support public policies. Processing ALS data at scale requires efficient point classification methods that perform well over highly diverse territories. To evaluate them, researchers need large annotated Lidar datasets, however, current Lidar benchmark datasets have restricted scope and often cover a single urban area. To bridge this data gap, we present the FRench ALS Clouds from TArgeted Landscapes (FRACTAL) dataset: an ultra-large-scale aerial Lidar dataset made of 100,000 dense point clouds with high-quality labels for 7 semantic classes and spanning 250 km$^2$. FRACTAL is built upon France's nationwide open Lidar data. It achieves spatial and semantic diversity via a sampling scheme that explicitly concentrates rare classes and challenging landscapes from five French regions. It should support the development of 3D deep learning approaches for large-scale land monitoring. We describe the nature of the source data, the sampling workflow, the content of the resulting dataset, and provide an initial evaluation of segmentation performance using a performant 3D neural architecture.
Large Language Models (LLMs) have made significant progress in utilizing tools, but their ability is limited by API availability and the instability of implicit reasoning, particularly when both planning and execution are involved. To overcome these limitations, we propose CREATOR, a novel framework that enables LLMs to create their own tools using documentation and code realization. CREATOR disentangles abstract tool creation and concrete decision execution, resulting in improved performance. We evaluate CREATOR on MATH and TabMWP benchmarks, respectively consisting of challenging math competition problems and diverse tabular contents. Remarkably, CREATOR outperforms existing chain-of-thought, program-of-thought, and tool-using baselines. Additionally, we introduce the Creation Challenge dataset, featuring 2K diverse questions, to emphasize the necessity and benefits of LLMs' tool creation ability. Further research demonstrates that leveraging LLMs as tool creators facilitates knowledge transfer, and LLMs exhibit varying levels of tool creation abilities, enabling them to adapt to diverse situations. The tool creation ability revolutionizes the LLM's problem-solving paradigm, driving us closer to the next frontier of artificial intelligence. All the codes and data are released.
Evaluation of multilingual Large Language Models (LLMs) is challenging due to a variety of factors -- the lack of benchmarks with sufficient linguistic diversity, contamination of popular benchmarks into LLM pre-training data and the lack of local, cultural nuances in translated benchmarks. In this work, we study human and LLM-based evaluation in a multilingual, multi-cultural setting. We evaluate 30 models across 10 Indic languages by conducting 90K human evaluations and 30K LLM-based evaluations and find that models such as GPT-4o and Llama-3 70B consistently perform best for most Indic languages. We build leaderboards for two evaluation settings - pairwise comparison and direct assessment and analyse the agreement between humans and LLMs. We find that humans and LLMs agree fairly well in the pairwise setting but the agreement drops for direct assessment evaluation especially for languages such as Bengali and Odia. We also check for various biases in human and LLM-based evaluation and find evidence of self-bias in the GPT-based evaluator. Our work presents a significant step towards scaling up multilingual evaluation of LLMs.
In-Context Learning (ICL) is a critical capability of Large Language Models (LLMs) as it empowers them to comprehend and reason across interconnected inputs. Evaluating the ICL ability of LLMs can enhance their utilization and deepen our understanding of how this ability is acquired at the training stage. However, existing evaluation frameworks primarily focus on language abilities and knowledge, often overlooking the assessment of ICL ability. In this work, we introduce the ICLEval benchmark to evaluate the ICL abilities of LLMs, which encompasses two key sub-abilities: exact copying and rule learning. Through the ICLEval benchmark, we demonstrate that ICL ability is universally present in different LLMs, and model size is not the sole determinant of ICL efficacy. Surprisingly, we observe that ICL abilities, particularly copying, develop early in the pretraining process and stabilize afterward. Our source codes and benchmark are released at //github.com/yiye3/ICLEval.
This paper introduces DiffTOP, which utilizes Differentiable Trajectory OPtimization as the policy representation to generate actions for deep reinforcement and imitation learning. Trajectory optimization is a powerful and widely used algorithm in control, parameterized by a cost and a dynamics function. The key to our approach is to leverage the recent progress in differentiable trajectory optimization, which enables computing the gradients of the loss with respect to the parameters of trajectory optimization. As a result, the cost and dynamics functions of trajectory optimization can be learned end-to-end. DiffTOP addresses the ``objective mismatch'' issue of prior model-based RL algorithms, as the dynamics model in DiffTOP is learned to directly maximize task performance by differentiating the policy gradient loss through the trajectory optimization process. We further benchmark DiffTOP for imitation learning on standard robotic manipulation task suites with high-dimensional sensory observations and compare our method to feed-forward policy classes as well as Energy-Based Models (EBM) and Diffusion. Across 15 model-based RL tasks and 35imitation learning tasks with high-dimensional image and point cloud inputs, DiffTOP outperforms prior state-of-the-art methods in both domains.
As the scaling of Large Language Models (LLMs) has dramatically enhanced their capabilities, there has been a growing focus on the alignment problem to ensure their responsible and ethical use. While existing alignment efforts predominantly concentrate on universal values such as the HHH principle, the aspect of culture, which is inherently pluralistic and diverse, has not received adequate attention. This work introduces a new benchmark, CDEval, aimed at evaluating the cultural dimensions of LLMs. CDEval is constructed by incorporating both GPT-4's automated generation and human verification, covering six cultural dimensions across seven domains. Our comprehensive experiments provide intriguing insights into the culture of mainstream LLMs, highlighting both consistencies and variations across different dimensions and domains. The findings underscore the importance of integrating cultural considerations in LLM development, particularly for applications in diverse cultural settings. Through CDEval, we aim to broaden the horizon of LLM alignment research by including cultural dimensions, thus providing a more holistic framework for the future development and evaluation of LLMs. This benchmark serves as a valuable resource for cultural studies in LLMs, paving the way for more culturally aware and sensitive models.
Recent works have demonstrated the potential of Graph Neural Networks (GNN) for network intrusion detection. Despite their advantages, a significant gap persists between real-world scenarios, where detection speed is critical, and existing proposals, which operate on large graphs representing several hours of traffic. This gap results in unrealistic operational conditions and impractical detection delays. Moreover, existing models do not generalize well across different networks, hampering their deployment in production environments. To address these issues, we introduce PPTGNN, a practical spatio-temporal GNN for intrusion detection. PPTGNN enables near real-time predictions, while better capturing the spatio-temporal dynamics of network attacks. PPTGNN employs self-supervised pre-training for improved performance and reduced dependency on labeled data. We evaluate PPTGNN on three public datasets and show that it significantly outperforms state-of-the-art models, such as E-ResGAT and E-GraphSAGE, with an average accuracy improvement of 10.38%. Finally, we show that a pre-trained PPTGNN can easily be fine-tuned to unseen networks with minimal labeled examples. This highlights the potential of PPTGNN as a general, large-scale pre-trained model that can effectively operate in diverse network environments.
It is imperative for Large language models (LLMs) to follow instructions with elaborate requirements (i.e. Complex Instructions Following). Yet, it remains under-explored how to enhance the ability of LLMs to follow complex instructions with multiple constraints. To bridge the gap, we initially study what training data is effective in enhancing complex constraints following abilities. We found that training LLMs with instructions containing multiple constraints enhances their understanding of complex instructions, especially those with lower complexity levels. The improvement can even generalize to compositions of out-of-domain constraints. Additionally, we further propose methods addressing how to obtain and utilize the effective training data. Finally, we conduct extensive experiments to prove the effectiveness of our methods in terms of overall performance and training efficiency. We also demonstrate that our methods improve models' ability to follow instructions generally and generalize effectively across out-of-domain, in-domain, and adversarial settings, while maintaining general capabilities.
Stance detection holds great potential for enhancing the quality of online political discussions, as it has shown to be useful for summarizing discussions, detecting misinformation, and evaluating opinion distributions. Usually, transformer-based models are used directly for stance detection, which require large amounts of data. However, the broad range of debate questions in online political discussion creates a variety of possible scenarios that the model is faced with and thus makes data acquisition for model training difficult. In this work, we show how to leverage LLM-generated synthetic data to train and improve stance detection agents for online political discussions:(i) We generate synthetic data for specific debate questions by prompting a Mistral-7B model and show that fine-tuning with the generated synthetic data can substantially improve the performance of stance detection. (ii) We examine the impact of combining synthetic data with the most informative samples from an unlabelled dataset. First, we use the synthetic data to select the most informative samples, second, we combine both these samples and the synthetic data for fine-tuning. This approach reduces labelling effort and consistently surpasses the performance of the baseline model that is trained with fully labeled data. Overall, we show in comprehensive experiments that LLM-generated data greatly improves stance detection performance for online political discussions.
Personal values are a crucial factor behind human decision-making. Considering that Large Language Models (LLMs) have been shown to impact human decisions significantly, it is essential to make sure they accurately understand human values to ensure their safety. However, evaluating their grasp of these values is complex due to the value's intricate and adaptable nature. We argue that truly understanding values in LLMs requires considering both "know what" and "know why". To this end, we present a comprehensive evaluation metric, ValueDCG (Value Discriminator-Critique Gap), to quantitatively assess the two aspects with an engineering implementation. We assess four representative LLMs and provide compelling evidence that the growth rates of LLM's "know what" and "know why" capabilities do not align with increases in parameter numbers, resulting in a decline in the models' capacity to understand human values as larger amounts of parameters. This may further suggest that LLMs might craft plausible explanations based on the provided context without truly understanding their inherent value, indicating potential risks.
In many real-world network datasets such as co-authorship, co-citation, email communication, etc., relationships are complex and go beyond pairwise. Hypergraphs provide a flexible and natural modeling tool to model such complex relationships. The obvious existence of such complex relationships in many real-world networks naturaly motivates the problem of learning with hypergraphs. A popular learning paradigm is hypergraph-based semi-supervised learning (SSL) where the goal is to assign labels to initially unlabeled vertices in a hypergraph. Motivated by the fact that a graph convolutional network (GCN) has been effective for graph-based SSL, we propose HyperGCN, a novel GCN for SSL on attributed hypergraphs. Additionally, we show how HyperGCN can be used as a learning-based approach for combinatorial optimisation on NP-hard hypergraph problems. We demonstrate HyperGCN's effectiveness through detailed experimentation on real-world hypergraphs.