亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

For decades, Simultaneous Ascending Auction (SAA) has been the most popular mechanism used for spectrum auctions. It has recently been employed by many countries for the allocation of 5G licences. Although SAA presents relatively simple rules, it induces a complex strategical game for which the optimal bidding strategy is unknown. Considering the fact that sometimes billions of euros are at stake in a SAA, establishing an efficient bidding strategy is crucial. In this work, we model the auction as a $n$-player simultaneous move game with complete information and propose the first efficient bidding algorithm that tackles simultaneously its four main strategical issues: the $\textit{exposure problem}$, the $\textit{own price effect}$, $\textit{budget constraints}$ and the $\textit{eligibility management problem}$. Our solution, called $SMS^\alpha$, is based on Simultaneous Move Monte Carlo Tree Search (SM-MCTS) and relies on a new method for the prediction of closing prices. By introducing scalarised rewards in $SMS^\alpha$, we give the possibility to bidders to define their own level of risk-aversion. Through extensive numerical experiments on instances of realistic size, we show that $SMS^\alpha$ largely outperforms state-of-the-art algorithms, notably by achieving higher expected utility while taking less risks.

相關內容

Graph Neural Networks (GNNs) has been extensively employed in the field of recommender systems, offering users personalized recommendations and yielding remarkable outcomes. Recently, GNNs incorporating contrastive learning have demonstrated promising performance in handling sparse data problem of recommendation system. However, existing contrastive learning methods still have limitations in addressing the cold-start problem and resisting noise interference especially for multi-behavior recommendation. To mitigate the aforementioned issues, the present research posits a GNNs based multi-behavior recommendation model MB-SVD that utilizes Singular Value Decomposition (SVD) graphs to enhance model performance. In particular, MB-SVD considers user preferences under different behaviors, improving recommendation effectiveness while better addressing the cold-start problem. Our model introduces an innovative methodology, which subsume multi-behavior contrastive learning paradigm to proficiently discern the intricate interconnections among heterogeneous manifestations of user behavior and generates SVD graphs to automate the distillation of crucial multi-behavior self-supervised information for robust graph augmentation. Furthermore, the SVD based framework reduces the embedding dimensions and computational load. Thorough experimentation showcases the remarkable performance of our proposed MB-SVD approach in multi-behavior recommendation endeavors across diverse real-world datasets.

Although Deep Reinforcement Learning (DRL) has achieved notable success in numerous robotic applications, designing a high-performing reward function remains a challenging task that often requires substantial manual input. Recently, Large Language Models (LLMs) have been extensively adopted to address tasks demanding in-depth common-sense knowledge, such as reasoning and planning. Recognizing that reward function design is also inherently linked to such knowledge, LLM offers a promising potential in this context. Motivated by this, we propose in this work a novel LLM framework with a self-refinement mechanism for automated reward function design. The framework commences with the LLM formulating an initial reward function based on natural language inputs. Then, the performance of the reward function is assessed, and the results are presented back to the LLM for guiding its self-refinement process. We examine the performance of our proposed framework through a variety of continuous robotic control tasks across three diverse robotic systems. The results indicate that our LLM-designed reward functions are able to rival or even surpass manually designed reward functions, highlighting the efficacy and applicability of our approach.

Deep Neural Networks (DNNs) have led to unprecedented progress in various natural language processing (NLP) tasks. Owing to limited data and computation resources, using third-party data and models has become a new paradigm for adapting various tasks. However, research shows that it has some potential security vulnerabilities because attackers can manipulate the training process and data source. Such a way can set specific triggers, making the model exhibit expected behaviors that have little inferior influence on the model's performance for primitive tasks, called backdoor attacks. Hence, it could have dire consequences, especially considering that the backdoor attack surfaces are broad. To get a precise grasp and understanding of this problem, a systematic and comprehensive review is required to confront various security challenges from different phases and attack purposes. Additionally, there is a dearth of analysis and comparison of the various emerging backdoor countermeasures in this situation. In this paper, we conduct a timely review of backdoor attacks and countermeasures to sound the red alarm for the NLP security community. According to the affected stage of the machine learning pipeline, the attack surfaces are recognized to be wide and then formalized into three categorizations: attacking pre-trained model with fine-tuning (APMF) or prompt-tuning (APMP), and attacking final model with training (AFMT), where AFMT can be subdivided into different attack aims. Thus, attacks under each categorization are combed. The countermeasures are categorized into two general classes: sample inspection and model inspection. Overall, the research on the defense side is far behind the attack side, and there is no single defense that can prevent all types of backdoor attacks. An attacker can intelligently bypass existing defenses with a more invisible attack. ......

The recent surge of interest surrounding Multimodal Neural Networks (MM-NN) is attributed to their ability to effectively process and integrate information from diverse data sources. In MM-NN, features are extracted and fused from multiple modalities using adequate unimodal backbones and specific fusion networks. Although this helps strengthen the multimodal information representation, designing such networks is labor-intensive. It requires tuning the architectural parameters of the unimodal backbones, choosing the fusing point, and selecting the operations for fusion. Furthermore, multimodality AI is emerging as a cutting-edge option in Internet of Things (IoT) systems where inference latency and energy consumption are critical metrics in addition to accuracy. In this paper, we propose Harmonic-NAS, a framework for the joint optimization of unimodal backbones and multimodal fusion networks with hardware awareness on resource-constrained devices. Harmonic-NAS involves a two-tier optimization approach for the unimodal backbone architectures and fusion strategy and operators. By incorporating the hardware dimension into the optimization, evaluation results on various devices and multimodal datasets have demonstrated the superiority of Harmonic-NAS over state-of-the-art approaches achieving up to 10.9% accuracy improvement, 1.91x latency reduction, and 2.14x energy efficiency gain.

Soil apparent electrical conductivity (ECa) is a vital metric in Precision Agriculture and Smart Farming, as it is used for optimal water content management, geological mapping, and yield prediction. Several existing methods seeking to estimate soil electrical conductivity are available, including physical soil sampling, ground sensor installation and monitoring, and the use of sensors that can obtain proximal ECa estimates. However, such methods can be either very laborious and/or too costly for practical use over larger field canopies. Robot-assisted ECa measurements, in contrast, may offer a scalable and cost-effective solution. In this work, we present one such solution that involves a ground mobile robot equipped with a customized and adjustable platform to hold an Electromagnetic Induction (EMI) sensor to perform semi-autonomous and on-demand ECa measurements under various field conditions. The platform is designed to be easily re-configurable in terms of sensor placement; results from testing for traversability and robot-to-sensor interference across multiple case studies help establish appropriate tradeoffs for sensor placement. Further, a developed simulation software package enables rapid and accessible estimation of terrain traversability in relation to desired EMI sensor placement. Extensive experimental evaluation across different fields demonstrates that the obtained robot-assisted ECa measurements are of high linearity compared with the ground truth (data collected manually by a handheld EMI sensor) by scoring more than $90\%$ in Pearson correlation coefficient in both plot measurements and estimated ECa maps generated by kriging interpolation. The proposed robotic solution supports autonomous behavior development in the field since it utilizes the ROS navigation stack along with the RTK GNSS positioning data and features various ranging sensors.

While enjoying the great achievements brought by deep learning (DL), people are also worried about the decision made by DL models, since the high degree of non-linearity of DL models makes the decision extremely difficult to understand. Consequently, attacks such as adversarial attacks are easy to carry out, but difficult to detect and explain, which has led to a boom in the research on local explanation methods for explaining model decisions. In this paper, we evaluate the faithfulness of explanation methods and find that traditional tests on faithfulness encounter the random dominance problem, \ie, the random selection performs the best, especially for complex data. To further solve this problem, we propose three trend-based faithfulness tests and empirically demonstrate that the new trend tests can better assess faithfulness than traditional tests on image, natural language and security tasks. We implement the assessment system and evaluate ten popular explanation methods. Benefiting from the trend tests, we successfully assess the explanation methods on complex data for the first time, bringing unprecedented discoveries and inspiring future research. Downstream tasks also greatly benefit from the tests. For example, model debugging equipped with faithful explanation methods performs much better for detecting and correcting accuracy and security problems.

Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.

Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.

Deep Learning has implemented a wide range of applications and has become increasingly popular in recent years. The goal of multimodal deep learning is to create models that can process and link information using various modalities. Despite the extensive development made for unimodal learning, it still cannot cover all the aspects of human learning. Multimodal learning helps to understand and analyze better when various senses are engaged in the processing of information. This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals. Detailed analysis of past and current baseline approaches and an in-depth study of recent advancements in multimodal deep learning applications has been provided. A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth. Architectures and datasets used in these applications are also discussed, along with their evaluation metrics. Last, main issues are highlighted separately for each domain along with their possible future research directions.

With the rise of knowledge graph (KG), question answering over knowledge base (KBQA) has attracted increasing attention in recent years. Despite much research has been conducted on this topic, it is still challenging to apply KBQA technology in industry because business knowledge and real-world questions can be rather complicated. In this paper, we present AliMe-KBQA, a bold attempt to apply KBQA in the E-commerce customer service field. To handle real knowledge and questions, we extend the classic "subject-predicate-object (SPO)" structure with property hierarchy, key-value structure and compound value type (CVT), and enhance traditional KBQA with constraints recognition and reasoning ability. We launch AliMe-KBQA in the Marketing Promotion scenario for merchants during the "Double 11" period in 2018 and other such promotional events afterwards. Online results suggest that AliMe-KBQA is not only able to gain better resolution and improve customer satisfaction, but also becomes the preferred knowledge management method by business knowledge staffs since it offers a more convenient and efficient management experience.

北京阿比特科技有限公司