We consider an online decision-making problem with a reward function defined over graph-structured data. We formally formulate the problem as an instance of graph action bandit. We then propose \texttt{GNN-TS}, a Graph Neural Network (GNN) powered Thompson Sampling (TS) algorithm which employs a GNN approximator for estimating the mean reward function and the graph neural tangent features for uncertainty estimation. We prove that, under certain boundness assumptions on the reward function, GNN-TS achieves a state-of-the-art regret bound which is (1) sub-linear of order $\tilde{\mathcal{O}}((\tilde{d} T)^{1/2})$ in the number of interaction rounds, $T$, and a notion of effective dimension $\tilde{d}$, and (2) independent of the number of graph nodes. Empirical results validate that our proposed \texttt{GNN-TS} exhibits competitive performance and scales well on graph action bandit problems.
We introduce an approach for analyzing the responses of dynamical systems to external perturbations that combines score-based generative modeling with the Generalized Fluctuation-Dissipation Theorem (GFDT). The methodology enables accurate estimation of system responses, including those with non-Gaussian statistics. We numerically validate our approach using time-series data from three different stochastic partial differential equations of increasing complexity: an Ornstein-Uhlenbeck process with spatially correlated noise, a modified stochastic Allen-Cahn equation, and the 2D Navier-Stokes equations. We demonstrate the improved accuracy of the methodology over conventional methods and discuss its potential as a versatile tool for predicting the statistical behavior of complex dynamical systems.
We present a polynomial-time algorithm for online differentially private synthetic data generation. For a data stream within the hypercube $[0,1]^d$ and an infinite time horizon, we develop an online algorithm that generates a differentially private synthetic dataset at each time $t$. This algorithm achieves a near-optimal accuracy bound of $O(\log(t)t^{-1/d})$ for $d\geq 2$ and $O(\log^{4.5}(t)t^{-1})$ for $d=1$ in the 1-Wasserstein distance. This result extends the previous work on the continual release model for counting queries to Lipschitz queries. Compared to the offline case, where the entire dataset is available at once, our approach requires only an extra polylog factor in the accuracy bound.
We introduce anticipation: a method for constructing a controllable generative model of a temporal point process (the event process) conditioned asynchronously on realizations of a second, correlated process (the control process). We achieve this by interleaving sequences of events and controls, such that controls appear following stopping times in the event sequence. This work is motivated by problems arising in the control of symbolic music generation. We focus on infilling control tasks, whereby the controls are a subset of the events themselves, and conditional generation completes a sequence of events given the fixed control events. We train anticipatory infilling models using the large and diverse Lakh MIDI music dataset. These models match the performance of autoregressive models for prompted music generation, with the additional capability to perform infilling control tasks, including accompaniment. Human evaluators report that an anticipatory model produces accompaniments with similar musicality to even music composed by humans over a 20-second clip.
Kernel methods underpin many of the most successful approaches in data science and statistics, and they allow representing probability measures as elements of a reproducing kernel Hilbert space without loss of information. Recently, the kernel Stein discrepancy (KSD), which combines Stein's method with kernel techniques, gained considerable attention. Through the Stein operator, KSD allows the construction of powerful goodness-of-fit tests where it is sufficient to know the target distribution up to a multiplicative constant. However, the typical U- and V-statistic-based KSD estimators suffer from a quadratic runtime complexity, which hinders their application in large-scale settings. In this work, we propose a Nystr\"om-based KSD acceleration -- with runtime $\mathcal O\!\left(mn+m^3\right)$ for $n$ samples and $m\ll n$ Nystr\"om points -- , show its $\sqrt{n}$-consistency under the null with a classical sub-Gaussian assumption, and demonstrate its applicability for goodness-of-fit testing on a suite of benchmarks.
Recent advancements in quantum computing have positioned it as a prospective solution for tackling intricate computational challenges, with supervised learning emerging as a promising domain for its application. Despite this potential, the field of quantum machine learning is still in its early stages, and there persists a level of skepticism regarding a possible near-term quantum advantage. This paper aims to provide a classical perspective on current quantum algorithms for supervised learning, effectively bridging traditional machine learning principles with advancements in quantum machine learning. Specifically, this study charts a research trajectory that diverges from the predominant focus of quantum machine learning literature, originating from the prerequisites of classical methodologies and elucidating the potential impact of quantum approaches. Through this exploration, our objective is to deepen the understanding of the convergence between classical and quantum methods, thereby laying the groundwork for future advancements in both domains and fostering the involvement of classical practitioners in the field of quantum machine learning.
Disentangled Representation Learning (DRL) aims to learn a model capable of identifying and disentangling the underlying factors hidden in the observable data in representation form. The process of separating underlying factors of variation into variables with semantic meaning benefits in learning explainable representations of data, which imitates the meaningful understanding process of humans when observing an object or relation. As a general learning strategy, DRL has demonstrated its power in improving the model explainability, controlability, robustness, as well as generalization capacity in a wide range of scenarios such as computer vision, natural language processing, data mining etc. In this article, we comprehensively review DRL from various aspects including motivations, definitions, methodologies, evaluations, applications and model designs. We discuss works on DRL based on two well-recognized definitions, i.e., Intuitive Definition and Group Theory Definition. We further categorize the methodologies for DRL into four groups, i.e., Traditional Statistical Approaches, Variational Auto-encoder Based Approaches, Generative Adversarial Networks Based Approaches, Hierarchical Approaches and Other Approaches. We also analyze principles to design different DRL models that may benefit different tasks in practical applications. Finally, we point out challenges in DRL as well as potential research directions deserving future investigations. We believe this work may provide insights for promoting the DRL research in the community.
Graph Neural Networks (GNNs) have been successfully used in many problems involving graph-structured data, achieving state-of-the-art performance. GNNs typically employ a message-passing scheme, in which every node aggregates information from its neighbors using a permutation-invariant aggregation function. Standard well-examined choices such as the mean or sum aggregation functions have limited capabilities, as they are not able to capture interactions among neighbors. In this work, we formalize these interactions using an information-theoretic framework that notably includes synergistic information. Driven by this definition, we introduce the Graph Ordering Attention (GOAT) layer, a novel GNN component that captures interactions between nodes in a neighborhood. This is achieved by learning local node orderings via an attention mechanism and processing the ordered representations using a recurrent neural network aggregator. This design allows us to make use of a permutation-sensitive aggregator while maintaining the permutation-equivariance of the proposed GOAT layer. The GOAT model demonstrates its increased performance in modeling graph metrics that capture complex information, such as the betweenness centrality and the effective size of a node. In practical use-cases, its superior modeling capability is confirmed through its success in several real-world node classification benchmarks.
This paper presents a new approach for assembling graph neural networks based on framelet transforms. The latter provides a multi-scale representation for graph-structured data. With the framelet system, we can decompose the graph feature into low-pass and high-pass frequencies as extracted features for network training, which then defines a framelet-based graph convolution. The framelet decomposition naturally induces a graph pooling strategy by aggregating the graph feature into low-pass and high-pass spectra, which considers both the feature values and geometry of the graph data and conserves the total information. The graph neural networks with the proposed framelet convolution and pooling achieve state-of-the-art performance in many types of node and graph prediction tasks. Moreover, we propose shrinkage as a new activation for the framelet convolution, which thresholds the high-frequency information at different scales. Compared to ReLU, shrinkage in framelet convolution improves the graph neural network model in terms of denoising and signal compression: noises in both node and structure can be significantly reduced by accurately cutting off the high-pass coefficients from framelet decomposition, and the signal can be compressed to less than half its original size with the prediction performance well preserved.
We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.
The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.