亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Coflow is a network abstraction used to represent communication patterns in data centers. The coflow scheduling problem in large data centers is one of the most important $NP$-hard problems. Many previous studies on coflow scheduling mainly focus on the single-core model. However, with the growth of data centers, this single-core model is no longer sufficient. This paper considers the coflow scheduling problem in heterogeneous parallel networks. The heterogeneous parallel network is an architecture based on multiple network cores running in parallel. In this paper, two polynomial-time approximation algorithms are developed for scheduling divisible and indivisible coflows in heterogeneous parallel networks, respectively. Both algorithms achieve an approximation ratio of $O(\log m/ \log \log m)$ with arbitrary release times.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

We study the problem of histogram estimation under user-level differential privacy, where the goal is to preserve the privacy of all entries of any single user. While there is abundant literature on this classical problem under the item-level privacy setup where each user contributes only one data point, little has been known for the user-level counterpart. We consider the heterogeneous scenario where both the quantity and distribution of data can be different for each user. We propose an algorithm based on a clipping strategy that almost achieves a two-approximation with respect to the best clipping threshold in hindsight. This result holds without any distribution assumptions on the data. We also prove that the clipping bias can be significantly reduced when the counts are from non-i.i.d. Poisson distributions and show empirically that our debiasing method provides improvements even without such constraints. Experiments on both real and synthetic datasets verify our theoretical findings and demonstrate the effectiveness of our algorithms.

In modern machine learning, users often have to collaborate to learn the distribution of the data. Communication can be a significant bottleneck. Prior work has studied homogeneous users -- i.e., whose data follow the same discrete distribution -- and has provided optimal communication-efficient methods for estimating that distribution. However, these methods rely heavily on homogeneity, and are less applicable in the common case when users' discrete distributions are heterogeneous. Here we consider a natural and tractable model of heterogeneity, where users' discrete distributions only vary sparsely, on a small number of entries. We propose a novel two-stage method named SHIFT: First, the users collaborate by communicating with the server to learn a central distribution; relying on methods from robust statistics. Then, the learned central distribution is fine-tuned to estimate their respective individual distribution. We show that SHIFT is minimax optimal in our model of heterogeneity and under communication constraints. Further, we provide experimental results using both synthetic data and $n$-gram frequency estimation in the text domain, which corroborate its efficiency.

State-of-the-art computer vision models are mostly trained with supervised learning using human-labeled images, which limits their scalability due to the expensive annotation cost. While self-supervised representation learning has achieved impressive progress, it still requires a second stage of finetuning on labeled data. On the other hand, models pre-trained with large-scale text-image supervision (e.g., CLIP) have enabled zero-shot transfer to downstream image classification tasks. However, the zero-shot performance of CLIP-like models are often insufficient for real-world adoption. In this paper, we aim to leverage the abundant unlabeled data to improve the performance of a pre-trained zero-shot classifier on downstream tasks. We propose Masked Unsupervised Self-Training (MUST), a new approach which leverages two different and complimentary sources of supervision: pseudo-labels and raw images. MUST jointly optimizes three objectives to learn both class-level global feature and pixel-level local feature and enforces a regularization between the two. We demonstrate the efficacy of MUST on 8 downstream tasks across a variety of domains, where it improves upon CLIP by a large margin and narrows the performance gap between unsupervised and supervised classification. For instance, MUST achieves a zero-shot top-1 accuracy of 77.7% on ImageNet using ViT-B, +9.4% higher than CLIP. Our code is available at //github.com/salesforce/MUST.

Due to the importance of the lower bounding distances and the attractiveness of symbolic representations, the family of symbolic aggregate approximations (SAX) has been used extensively for encoding time series data. However, typical SAX-based methods rely on two restrictive assumptions; the Gaussian distribution and equiprobable symbols. This paper proposes two novel data-driven SAX-based symbolic representations, distinguished by their discretization steps. The first representation, oriented for general data compaction and indexing scenarios, is based on the combination of kernel density estimation and Lloyd-Max quantization to minimize the information loss and mean squared error in the discretization step. The second method, oriented for high-level mining tasks, employs the Mean-Shift clustering method and is shown to enhance anomaly detection in the lower-dimensional space. Besides, we verify on a theoretical basis a previously observed phenomenon of the intrinsic process that results in a lower than the expected variance of the intermediate piecewise aggregate approximation. This phenomenon causes an additional information loss but can be avoided with a simple modification. The proposed representations possess all the attractive properties of the conventional SAX method. Furthermore, experimental evaluation on real-world datasets demonstrates their superiority compared to the traditional SAX and an alternative data-driven SAX variant.

In this paper, a new weighted average estimator (WAVE) is proposed to enhance the performance of the simple-averaging based distributed estimator, under a general loss with a high dimensional parameter. To obtain an efficient estimator, a weighted least-square ensemble framework plus an adaptive $L_1$ penalty is proposed, in which the local estimator is estimated via the adaptive-lasso and the weight is inversely proportional to the variance of local estimators. It can be proved that WAVE enjoys the same asymptotic properties as the global estimator and simultaneously spend a very low communication cost, only requiring the local worker to deliver two vectors to the master. Moreover, it is shown that WAVE is effective even when the samples across local workers have different mean and covariance. In particular, the asymptotic normality is established under such conditions, while other competitors may not own this property. The effectiveness of WAVE is further illustrated by an extensive numerical study and a real data analysis.

The ever-growing data privacy concerns have transformed machine learning (ML) architectures from centralized to distributed, leading to federated learning (FL) and split learning (SL) as the two most popular privacy-preserving ML paradigms. However, implementing either conventional FL or SL alone with diverse network conditions (e.g., device-to-device (D2D) and cellular communications) and heterogeneous clients (e.g., heterogeneous computation/communication/energy capabilities) may face significant challenges, particularly poor architecture scalability and long training time. To this end, this article proposes two novel hybrid distributed ML architectures, namely, hybrid split FL (HSFL) and hybrid federated SL (HFSL), by combining the advantages of both FL and SL in D2D-enabled heterogeneous wireless networks. Specifically, the performance comparison and advantages of HSFL and HFSL are analyzed generally. Promising open research directions are presented to offer commendable reference for future research. Finally, primary simulations are conducted upon considering three datasets under non-independent and identically distributed settings, to verify the feasibility of our proposed architectures, which can significantly reduce communication/computation cost and training time, as compared with conventional FL and SL.

We propose a novel and unified framework for change-point estimation in multivariate time series. The proposed method is fully nonparametric, enjoys effortless tuning and is robust to temporal dependence. One salient and distinct feature of the proposed method is its versatility, where it allows change-point detection for a broad class of parameters (such as mean, variance, correlation and quantile) in a unified fashion. At the core of our method, we couple the self-normalization (SN) based tests with a novel nested local-window segmentation algorithm, which seems new in the growing literature of change-point analysis. Due to the presence of an inconsistent long-run variance estimator in the SN test, non-standard theoretical arguments are further developed to derive the consistency and convergence rate of the proposed SN-based change-point detection method. Extensive numerical experiments and relevant real data analysis are conducted to illustrate the effectiveness and broad applicability of our proposed method in comparison with state-of-the-art approaches in the literature.

Efficient deployment of deep neural networks across many devices and resource constraints, especially on edge devices, is one of the most challenging problems in the presence of data-privacy preservation issues. Conventional approaches have evolved to either improve a single global model while keeping each local training data decentralized (i.e., data-heterogeneity) or to train a once-for-all network that supports diverse architectural settings to address heterogeneous systems equipped with different computational capabilities (i.e., model-heterogeneity). However, little research has considered both directions simultaneously. In this work, we propose a novel framework to consider both scenarios, namely Federation of Supernet Training (FedSup), where clients send and receive a supernet whereby it contains all possible architectures sampled from itself. It is inspired by how averaging parameters in the model aggregation stage of Federated Learning (FL) is similar to weight-sharing in supernet training. Specifically, in the FedSup framework, a weight-sharing approach widely used in the training single shot model is combined with the averaging of Federated Learning (FedAvg). Under our framework, we present an efficient algorithm (E-FedSup) by sending the sub-model to clients in the broadcast stage for reducing communication costs and training overhead. We demonstrate several strategies to enhance supernet training in the FL environment and conduct extensive empirical evaluations. The resulting framework is shown to pave the way for the robustness of both data- and model-heterogeneity on several standard benchmarks.

Recent years have witnessed the emerging success of graph neural networks (GNNs) for modeling structured data. However, most GNNs are designed for homogeneous graphs, in which all nodes and edges belong to the same types, making them infeasible to represent heterogeneous structures. In this paper, we present the Heterogeneous Graph Transformer (HGT) architecture for modeling Web-scale heterogeneous graphs. To model heterogeneity, we design node- and edge-type dependent parameters to characterize the heterogeneous attention over each edge, empowering HGT to maintain dedicated representations for different types of nodes and edges. To handle dynamic heterogeneous graphs, we introduce the relative temporal encoding technique into HGT, which is able to capture the dynamic structural dependency with arbitrary durations. To handle Web-scale graph data, we design the heterogeneous mini-batch graph sampling algorithm---HGSampling---for efficient and scalable training. Extensive experiments on the Open Academic Graph of 179 million nodes and 2 billion edges show that the proposed HGT model consistently outperforms all the state-of-the-art GNN baselines by 9%--21% on various downstream tasks.

Graph representation learning is to learn universal node representations that preserve both node attributes and structural information. The derived node representations can be used to serve various downstream tasks, such as node classification and node clustering. When a graph is heterogeneous, the problem becomes more challenging than the homogeneous graph node learning problem. Inspired by the emerging information theoretic-based learning algorithm, in this paper we propose an unsupervised graph neural network Heterogeneous Deep Graph Infomax (HDGI) for heterogeneous graph representation learning. We use the meta-path structure to analyze the connections involving semantics in heterogeneous graphs and utilize graph convolution module and semantic-level attention mechanism to capture local representations. By maximizing local-global mutual information, HDGI effectively learns high-level node representations that can be utilized in downstream graph-related tasks. Experiment results show that HDGI remarkably outperforms state-of-the-art unsupervised graph representation learning methods on both classification and clustering tasks. By feeding the learned representations into a parametric model, such as logistic regression, we even achieve comparable performance in node classification tasks when comparing with state-of-the-art supervised end-to-end GNN models.

北京阿比特科技有限公司