亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Intelligent edge vision tasks face the challenge of power and latency efficiency as the computation load is normally heavy for edge platforms. This work leverages one of the first "AI in sensor" vision platforms, IMX500 by Sony, to achieve ultra-fast and ultra-low-power end-to-end edge vision applications. We evaluate the IMX500 and compare it to other edge platforms, such as the Google Coral Dev Micro and Sony Spresense, by exploring gaze estimation as a case study. We propose TinyTracker, a highly efficient, fully quantized model for 2D gaze estimation designed to maximize the performance of the edge vision systems considered in this study. TinyTracker achieves a 41x size reduction (600Kb) compared to iTracker [1] without significant loss in gaze estimation accuracy (maximum of 0.16 cm when fully quantized). TinyTracker's deployment on the Sony IMX500 vision sensor results in end-to-end latency of around 19ms. The camera takes around 17.9ms to read, process and transmit the pixels to the accelerator. The inference time of the network is 0.86ms with an additional 0.24 ms for retrieving the results from the sensor. and the overall energy consumption of the end-to-end system is 4.9 mJ, including 0.06 mJ for inference. The end-to-end study shows that IMX500 is 1.7x faster than CoralMicro (19ms vs 34.4ms) and 7x more power efficient (4.9mJ VS 34.2mJ)

相關內容

The problem of phase retrieval (PR) involves recovering an unknown image from limited amplitude measurement data and is a challenge nonlinear inverse problem in computational imaging and image processing. However, many of the PR methods are based on black-box network models that lack interpretability and plug-and-play (PnP) frameworks that are computationally complex and require careful parameter tuning. To address this, we have developed PRISTA-Net, a deep unfolding network (DUN) based on the first-order iterative shrinkage thresholding algorithm (ISTA). This network utilizes a learnable nonlinear transformation to address the proximal-point mapping sub-problem associated with the sparse priors, and an attention mechanism to focus on phase information containing image edges, textures, and structures. Additionally, the fast Fourier transform (FFT) is used to learn global features to enhance local information, and the designed logarithmic-based loss function leads to significant improvements when the noise level is low. All parameters in the proposed PRISTA-Net framework, including the nonlinear transformation, threshold parameters, and step size, are learned end-to-end instead of being manually set. This method combines the interpretability of traditional methods with the fast inference ability of deep learning and is able to handle noise at each iteration during the unfolding stage, thus improving recovery quality. Experiments on Coded Diffraction Patterns (CDPs) measurements demonstrate that our approach outperforms the existing state-of-the-art methods in terms of qualitative and quantitative evaluations. Our source codes are available at \emph{//github.com/liuaxou/PRISTA-Net}.

The fast growth of computational power and scales of modern super-computing systems have raised great challenges for the management of exascale scientific data. To maintain the usability of scientific data, error-bound lossy compression is proposed and developed as an essential technique for the size reduction of scientific data with constrained data distortion. Among the diverse datasets generated by various scientific simulations, certain datasets cannot be effectively compressed by existing error-bounded lossy compressors with traditional techniques. The recent success of Artificial Intelligence has inspired several researchers to integrate neural networks into error-bounded lossy compressors. However, those works still suffer from limited compression ratios and/or extremely low efficiencies. To address those issues and improve the compression on the hard-to-compress datasets, in this paper, we propose SRN-SZ, which is a deep learning-based scientific error-bounded lossy compressor leveraging the hierarchical data grid expansion paradigm implemented by super-resolution neural networks. SRN-SZ applies the most advanced super-resolution network HAT for its compression, which is free of time-costing per-data training. In experiments compared with various state-of-the-art compressors, SRN-SZ achieves up to 75% compression ratio improvements under the same error bound and up to 80% compression ratio improvements under the same PSNR than the second-best compressor.

Few-shot video action recognition is an effective approach to recognizing new categories with only a few labeled examples, thereby reducing the challenges associated with collecting and annotating large-scale video datasets. Existing methods in video action recognition rely on large labeled datasets from the same domain. However, this setup is not realistic as novel categories may come from different data domains that may have different spatial and temporal characteristics. This dissimilarity between the source and target domains can pose a significant challenge, rendering traditional few-shot action recognition techniques ineffective. To address this issue, in this work, we propose a novel cross-domain few-shot video action recognition method that leverages self-supervised learning and curriculum learning to balance the information from the source and target domains. To be particular, our method employs a masked autoencoder-based self-supervised training objective to learn from both source and target data in a self-supervised manner. Then a progressive curriculum balances learning the discriminative information from the source dataset with the generic information learned from the target domain. Initially, our curriculum utilizes supervised learning to learn class discriminative features from the source data. As the training progresses, we transition to learning target-domain-specific features. We propose a progressive curriculum to encourage the emergence of rich features in the target domain based on class discriminative supervised features in the source domain. %a schedule that helps with this transition. We evaluate our method on several challenging benchmark datasets and demonstrate that our approach outperforms existing cross-domain few-shot learning techniques. Our code is available at \hyperlink{//github.com/Sarinda251/CDFSL-V}{//github.com/Sarinda251/CDFSL-V}

Channel charting is a self-supervised learning technique whose objective is to reconstruct a map of the radio environment, called channel chart, by taking advantage of similarity relationships in high-dimensional channel state information. We provide an overview of processing steps and evaluation methods for channel charting and propose a novel dissimilarity metric that takes into account angular-domain information as well as a novel deep learning-based metric. Furthermore, we suggest a method to fuse dissimilarity metrics such that both the time at which channels were measured as well as similarities in channel state information can be taken into consideration while learning a channel chart. By applying both classical and deep learning-based manifold learning to a dataset containing sub-6GHz distributed massive MIMO channel measurements, we show that our metrics outperform previously proposed dissimilarity measures. The results indicate that the new metrics improve channel charting performance, even under non-line-of-sight conditions.

Vision Transformers (ViTs) have shown impressive performance in computer vision, but their high computational cost, quadratic in the number of tokens, limits their adoption in computation-constrained applications. However, this large number of tokens may not be necessary, as not all tokens are equally important. In this paper, we investigate token pruning to accelerate inference for object detection and instance segmentation, extending prior works from image classification. Through extensive experiments, we offer four insights for dense tasks: (i) tokens should not be completely pruned and discarded, but rather preserved in the feature maps for later use. (ii) reactivating previously pruned tokens can further enhance model performance. (iii) a dynamic pruning rate based on images is better than a fixed pruning rate. (iv) a lightweight, 2-layer MLP can effectively prune tokens, achieving accuracy comparable with complex gating networks with a simpler design. We evaluate the impact of these design choices on COCO dataset and present a method integrating these insights that outperforms prior art token pruning models, significantly reducing performance drop from ~1.5 mAP to ~0.3 mAP for both boxes and masks. Compared to the dense counterpart that uses all tokens, our method achieves up to 34% faster inference speed for the whole network and 46% for the backbone.

Diseases such as diabetic retinopathy and age-related macular degeneration pose a significant risk to vision, highlighting the importance of precise segmentation of retinal vessels for the tracking and diagnosis of progression. However, existing vessel segmentation methods that heavily rely on encoder-decoder structures struggle to capture contextual information about retinal vessel configurations, leading to challenges in reconciling semantic disparities between encoder and decoder features. To address this, we propose a novel feature enhancement segmentation network (FES-Net) that achieves accurate pixel-wise segmentation without requiring additional image enhancement steps. FES-Net directly processes the input image and utilizes four prompt convolutional blocks (PCBs) during downsampling, complemented by a shallow upsampling approach to generate a binary mask for each class. We evaluate the performance of FES-Net on four publicly available state-of-the-art datasets: DRIVE, STARE, CHASE, and HRF. The evaluation results clearly demonstrate the superior performance of FES-Net compared to other competitive approaches documented in the existing literature.

Foundation models pretrained on diverse data at scale have demonstrated extraordinary capabilities in a wide range of vision and language tasks. When such models are deployed in real world environments, they inevitably interface with other entities and agents. For example, language models are often used to interact with human beings through dialogue, and visual perception models are used to autonomously navigate neighborhood streets. In response to these developments, new paradigms are emerging for training foundation models to interact with other agents and perform long-term reasoning. These paradigms leverage the existence of ever-larger datasets curated for multimodal, multitask, and generalist interaction. Research at the intersection of foundation models and decision making holds tremendous promise for creating powerful new systems that can interact effectively across a diverse range of applications such as dialogue, autonomous driving, healthcare, education, and robotics. In this manuscript, we examine the scope of foundation models for decision making, and provide conceptual tools and technical background for understanding the problem space and exploring new research directions. We review recent approaches that ground foundation models in practical decision making applications through a variety of methods such as prompting, conditional generative modeling, planning, optimal control, and reinforcement learning, and discuss common challenges and open problems in the field.

Over the past few years, the rapid development of deep learning technologies for computer vision has greatly promoted the performance of medical image segmentation (MedISeg). However, the recent MedISeg publications usually focus on presentations of the major contributions (e.g., network architectures, training strategies, and loss functions) while unwittingly ignoring some marginal implementation details (also known as "tricks"), leading to a potential problem of the unfair experimental result comparisons. In this paper, we collect a series of MedISeg tricks for different model implementation phases (i.e., pre-training model, data pre-processing, data augmentation, model implementation, model inference, and result post-processing), and experimentally explore the effectiveness of these tricks on the consistent baseline models. Compared to paper-driven surveys that only blandly focus on the advantages and limitation analyses of segmentation models, our work provides a large number of solid experiments and is more technically operable. With the extensive experimental results on both the representative 2D and 3D medical image datasets, we explicitly clarify the effect of these tricks. Moreover, based on the surveyed tricks, we also open-sourced a strong MedISeg repository, where each of its components has the advantage of plug-and-play. We believe that this milestone work not only completes a comprehensive and complementary survey of the state-of-the-art MedISeg approaches, but also offers a practical guide for addressing the future medical image processing challenges including but not limited to small dataset learning, class imbalance learning, multi-modality learning, and domain adaptation. The code has been released at: //github.com/hust-linyi/MedISeg

With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.

Answering complex questions about images is an ambitious goal for machine intelligence, which requires a joint understanding of images, text, and commonsense knowledge, as well as a strong reasoning ability. Recently, multimodal Transformers have made great progress in the task of Visual Commonsense Reasoning (VCR), by jointly understanding visual objects and text tokens through layers of cross-modality attention. However, these approaches do not utilize the rich structure of the scene and the interactions between objects which are essential in answering complex commonsense questions. We propose a Scene Graph Enhanced Image-Text Learning (SGEITL) framework to incorporate visual scene graphs in commonsense reasoning. To exploit the scene graph structure, at the model structure level, we propose a multihop graph transformer for regularizing attention interaction among hops. As for pre-training, a scene-graph-aware pre-training method is proposed to leverage structure knowledge extracted in the visual scene graph. Moreover, we introduce a method to train and generate domain-relevant visual scene graphs using textual annotations in a weakly-supervised manner. Extensive experiments on VCR and other tasks show a significant performance boost compared with the state-of-the-art methods and prove the efficacy of each proposed component.

北京阿比特科技有限公司