亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

OpenFlow switches are fundamental components of software defined networking, where the key operation is to look up flow tables to determine which flow an incoming packet belongs to. This needs to address the same multi-field rule-matching problem as legacy packet classification, but faces more serious scalability challenges. The demand of fast on-line updates makes most existing solutions unfit, while the rest still lacks the scalability to either large data sets or large number of fields to match for a rule. In this work, we propose TupleChain for fast OpenFlow table lookup with multifaceted scalability. We group rules based on their masks, each being maintained with a hash table, and explore the connections among rule groups to skip unnecessary hash probes for fast search. We show via theoretical analysis and extensive experiments that the proposed scheme not only has competitive computing complexity, but is also scalable and can achieve high performance in both search and update. It can process multiple millions of packets per second, while dealing with millions of on-line updates per second at the same time, and its lookup speed maintains at the same level no mater it handles a large flow table with 10 million rules or a flow table with every entry having as many as 100 match fields.

相關內容

FAST:Conference on File and Storage Technologies。 Explanation:文件和存儲技術會議。 Publisher:USENIX。 SIT:

Adversarial attacks are a potential threat to machine learning models by causing incorrect predictions through imperceptible perturbations to the input data. While these attacks have been extensively studied in unstructured data like images, applying them to tabular data, poses new challenges. These challenges arise from the inherent heterogeneity and complex feature interdependencies in tabular data, which differ from the image data. To account for this distinction, it is necessary to establish tailored imperceptibility criteria specific to tabular data. However, there is currently a lack of standardised metrics for assessing the imperceptibility of adversarial attacks on tabular data. To address this gap, we propose a set of key properties and corresponding metrics designed to comprehensively characterise imperceptible adversarial attacks on tabular data. These are: proximity to the original input, sparsity of altered features, deviation from the original data distribution, sensitivity in perturbing features with narrow distribution, immutability of certain features that should remain unchanged, feasibility of specific feature values that should not go beyond valid practical ranges, and feature interdependencies capturing complex relationships between data attributes. We evaluate the imperceptibility of five adversarial attacks, including both bounded attacks and unbounded attacks, on tabular data using the proposed imperceptibility metrics. The results reveal a trade-off between the imperceptibility and effectiveness of these attacks. The study also identifies limitations in current attack algorithms, offering insights that can guide future research in the area. The findings gained from this empirical analysis provide valuable direction for enhancing the design of adversarial attack algorithms, thereby advancing adversarial machine learning on tabular data.

There has been growing sentiment recently that modern large multimodal models (LMMs) have addressed most of the key challenges related to short video comprehension. As a result, both academia and industry are gradually shifting their attention towards the more complex challenges posed by understanding long-form videos. However, is this really the case? Our studies indicate that LMMs still lack many fundamental reasoning capabilities even when dealing with short videos. We introduce Vinoground, a temporal counterfactual LMM evaluation benchmark encompassing 1000 short and natural video-caption pairs. We demonstrate that existing LMMs severely struggle to distinguish temporal differences between different actions and object transformations. For example, the best model GPT-4o only obtains ~50% on our text and video scores, showing a large gap compared to the human baseline of ~90%. All open-source multimodal models and CLIP-based models perform much worse, producing mostly random chance performance. Through this work, we shed light onto the fact that temporal reasoning in short videos is a problem yet to be fully solved. The dataset and evaluation code are available at //vinoground.github.io.

Benefiting from the advancement of hardware accelerators such as GPUs, deep neural networks and scientific computing applications can achieve superior performance. Recently, the computing capacity of emerging hardware accelerators has increased rapidly, while memory bandwidth has not kept pace with this growth. This disparity exacerbates the gap between computing and memory, leading to inefficiencies on conventional algorithms, as they're likely to be converted from compute-bound to memory-bound. Symmetric eigenvalue decomposition (EVD), a critical operation in various research domains including scientific computing, deep learning training, and inference algorithms, exhibits suboptimal performance due to achieving less than 3\% hardware computing utilization on the H100 GPU. In this paper, we analyze the features of emerging hardware accelerators to identify the bottlenecks inherent in conventional EVD algorithms. To improve EVD performance, we propose several algorithmic optimizations aimed at solving the memory-bound problem and providing a better utilization of the rich computing capacity and parallelism on the emerging hardware accelerators. Experimentally, our proposed method demonstrates significant speedups on tridiagonalization, which is the main workload that takes over 90\% elapsed time of EVD, compared to the SOTA cuSOLVER tridiagonalization, achieving up to 10.1x, 7.5x, and 2.3x improvements on H100, A100, and RTX 4090 GPUs, respectively. And the end-to-end the performance of EVD solver is also up to 4.1x faster than cuSOVLER.

The EyeSight feature, introduced with the new Apple Vision Pro XR headset, promises to revolutionize user interaction by simulating real human eye expressions on a digital display. This feature could enhance XR devices' social acceptability and social presence when communicating with others outside the XR experience. In this pilot study, we explore the implications of the EyeSight feature by examining social acceptability, social presence, emotional responses, and technology acceptance. Eight participants engaged in conversational tasks in three conditions to contrast experiencing the Apple Vision Pro with EyeSight, the Meta Quest 3 as a reference XR headset, and a face-to-face setting. Our preliminary findings indicate that while the EyeSight feature improves perceptions of social presence and acceptability compared to the reference headsets, it does not match the social connectivity of direct human interactions.

We address the problem of learning-augmented online caching in the scenario when each request is accompanied by a prediction of the next occurrence of the requested page. We improve currently known bounds on the competitive ratio of the BlindOracle algorithm, which evicts a page predicted to be requested last. We also prove a lower bound on the competitive ratio of any randomized algorithm and show that a combination of the BlindOracle with the Marker algorithm achieves a competitive ratio that is optimal up to some constant.

The implications of backdoor attacks on English-centric large language models (LLMs) have been widely examined - such attacks can be achieved by embedding malicious behaviors during training and activated under specific conditions that trigger malicious outputs. Despite the increasing support for multilingual capabilities in open-source and proprietary LLMs, the impact of backdoor attacks on these systems remains largely under-explored. Our research focuses on cross-lingual backdoor attacks against multilingual LLMs, particularly investigating how poisoning the instruction-tuning data for one or two languages can affect the outputs for languages whose instruction-tuning data were not poisoned. Despite its simplicity, our empirical analysis reveals that our method exhibits remarkable efficacy in models like mT5 and GPT-4o, with high attack success rates, surpassing 90% in more than 7 out of 12 languages across various scenarios. Our findings also indicate that more powerful models show increased susceptibility to transferable cross-lingual backdoor attacks, which also applies to LLMs predominantly pre-trained on English data, such as Llama2, Llama3, and Gemma. Moreover, our experiments demonstrate 1) High Transferability: the backdoor mechanism operates successfully in cross-lingual response scenarios across 26 languages, achieving an average attack success rate of 99%, and 2) Robustness: the proposed attack remains effective even after defenses are applied. These findings expose critical security vulnerabilities in multilingual LLMs and highlight the urgent need for more robust, targeted defense strategies to address the unique challenges posed by cross-lingual backdoor transfer.

Reasoning, a crucial ability for complex problem-solving, plays a pivotal role in various real-world settings such as negotiation, medical diagnosis, and criminal investigation. It serves as a fundamental methodology in the field of Artificial General Intelligence (AGI). With the ongoing development of foundation models, e.g., Large Language Models (LLMs), there is a growing interest in exploring their abilities in reasoning tasks. In this paper, we introduce seminal foundation models proposed or adaptable for reasoning, highlighting the latest advancements in various reasoning tasks, methods, and benchmarks. We then delve into the potential future directions behind the emergence of reasoning abilities within foundation models. We also discuss the relevance of multimodal learning, autonomous agents, and super alignment in the context of reasoning. By discussing these future research directions, we hope to inspire researchers in their exploration of this field, stimulate further advancements in reasoning with foundation models, and contribute to the development of AGI.

Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

北京阿比特科技有限公司