亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

One of the interests of modern poultry farming is the vocalization of laying hens which contain very useful information on health behavior. This information is used as health and well-being indicators that help breeders better monitor laying hens, which involves early detection of problems for rapid and more effective intervention. In this work, we focus on the sound analysis for the recognition of the types of calls of the laying hens in order to propose a robust system of characterization of their behavior for a better monitoring. To do this, we first collected and annotated laying hen call signals, then designed an optimal acoustic characterization based on the combination of time and frequency domain features. We then used these features to build the multi-label classification models based on recurrent neural network to assign a semantic class to the vocalization that characterize the laying hen behavior. The results show an overall performance with our model based on the combination of time and frequency domain features that obtained the highest F1-score (F1=92.75) with a gain of 17% on the models using the frequency domain features and of 8% on the compared approaches from the litterature.

相關內容

循環神(shen)經(jing)網(wang)絡(luo)(RNN)是一類人工神(shen)經(jing)網(wang)絡(luo),其中節點之(zhi)(zhi)間的(de)連(lian)接沿時間序(xu)列形成(cheng)有向圖(tu)。 這使其表現出時間動態行(xing)為。 RNN源(yuan)自前饋神(shen)經(jing)網(wang)絡(luo),可以(yi)使用其內部狀態(內存)來處理可變長度的(de)輸入(ru)序(xu)列。這使得它(ta)們適用于諸如(ru)未分段的(de),連(lian)接的(de)手寫識別或語音識別之(zhi)(zhi)類的(de)任務。

Telecommunications and computer vision have evolved separately so far. Yet, with the shift to sub-terahertz (sub-THz) and terahertz (THz) radio communications, there is an opportunity to explore computer vision technologies together with radio communications, considering the dependency of both technologies on Line of Sight. The combination of radio sensing and computer vision can address challenges such as obstructions and poor lighting. Also, machine learning algorithms, capable of processing multimodal data, play a crucial role in deriving insights from raw and low-level sensing data, offering a new level of abstraction that can enhance various applications and use cases such as beamforming and terminal handovers. This paper introduces CONVERGE, a pioneering vision-radio paradigm that bridges this gap by leveraging Integrated Sensing and Communication (ISAC) to facilitate a dual "View-to-Communicate, Communicate-to-View" approach. CONVERGE offers tools that merge wireless communications and computer vision, establishing a novel Research Infrastructure (RI) that will be open to the scientific community and capable of providing open datasets. This new infrastructure will support future research in 6G and beyond concerning multiple verticals, such as telecommunications, automotive, manufacturing, media, and health.

This work presents a new method for enhancing communication efficiency in stochastic Federated Learning that trains over-parameterized random networks. In this setting, a binary mask is optimized instead of the model weights, which are kept fixed. The mask characterizes a sparse sub-network that is able to generalize as good as a smaller target network. Importantly, sparse binary masks are exchanged rather than the floating point weights in traditional federated learning, reducing communication cost to at most 1 bit per parameter (Bpp). We show that previous state of the art stochastic methods fail to find sparse networks that can reduce the communication and storage overhead using consistent loss objectives. To address this, we propose adding a regularization term to local objectives that acts as a proxy of the transmitted masks entropy, therefore encouraging sparser solutions by eliminating redundant features across sub-networks. Extensive empirical experiments demonstrate significant improvements in communication and memory efficiency of up to five magnitudes compared to the literature, with minimal performance degradation in validation accuracy in some instances

In Federated Learning (FL), devices that participate in the training usually have heterogeneous resources, i.e., energy availability. In current deployments of FL, devices that do not fulfill certain hardware requirements are often dropped from the collaborative training. However, dropping devices in FL can degrade training accuracy and introduce bias or unfairness. Several works have tacked this problem on an algorithmic level, e.g., by letting constrained devices train a subset of the server neural network (NN) model. However, it has been observed that these techniques are not effective w.r.t. accuracy. Importantly, they make simplistic assumptions about devices' resources via indirect metrics such as multiply accumulate (MAC) operations or peak memory requirements. In this work, for the first time, we consider on-device accelerator design for FL with heterogeneous devices. We utilize compressed arithmetic formats and approximate computing, targeting to satisfy limited energy budgets. Using a hardware-aware energy model, we observe that, contrary to the state of the art's moderate energy reduction, our technique allows for lowering the energy requirements (by 4x) while maintaining higher accuracy.

Challenges in real-world robotic applications often stem from managing multiple, dynamically varying entities such as neighboring robots, manipulable objects, and navigation goals. Existing multi-agent control strategies face scalability limitations, struggling to handle arbitrary numbers of entities. Additionally, they often rely on engineered heuristics for assigning entities among agents. We propose a data driven approach to address these limitations by introducing a decentralized control system using neural network policies trained in simulation. Leveraging permutation invariant neural network architectures and model-free reinforcement learning, our approach allows control agents to autonomously determine the relative importance of different entities without being biased by ordering or limited by a fixed capacity. We validate our approach through both simulations and real-world experiments involving multiple wheeled-legged quadrupedal robots, demonstrating their collaborative control capabilities. We prove the effectiveness of our architectural choice through experiments with three exemplary multi-entity problems. Our analysis underscores the pivotal role of the end-to-end trained permutation invariant encoders in achieving scalability and improving the task performance in multi-object manipulation or multi-goal navigation problems. The adaptability of our policy is further evidenced by its ability to manage varying numbers of entities in a zero-shot manner, showcasing near-optimal autonomous task distribution and collision avoidance behaviors.

Instance segmentation for low-light imagery remains largely unexplored due to the challenges imposed by such conditions, for example shot noise due to low photon count, color distortions and reduced contrast. In this paper, we propose an end-to-end solution to address this challenging task. Based on Mask R-CNN, our proposed method implements weighted non-local (NL) blocks in the feature extractor. This integration enables an inherent denoising process at the feature level. As a result, our method eliminates the need for aligned ground truth images during training, thus supporting training on real-world low-light datasets. We introduce additional learnable weights at each layer in order to enhance the network's adaptability to real-world noise characteristics, which affect different feature scales in different ways. Experimental results show that the proposed method outperforms the pretrained Mask R-CNN with an Average Precision (AP) improvement of +10.0, with the introduction of weighted NL Blocks further enhancing AP by +1.0.

Medical report generation (MRG) is essential for computer-aided diagnosis and medication guidance, which can relieve the heavy burden of radiologists by automatically generating the corresponding medical reports according to the given radiology image. However, due to the spurious correlations within image-text data induced by visual and linguistic biases, it is challenging to generate accurate reports reliably describing lesion areas. Moreover, the cross-modal confounders are usually unobservable and challenging to be eliminated explicitly. In this paper, we aim to mitigate the cross-modal data bias for MRG from a new perspective, i.e., cross-modal causal intervention, and propose a novel Visual-Linguistic Causal Intervention (VLCI) framework for MRG, which consists of a visual deconfounding module (VDM) and a linguistic deconfounding module (LDM), to implicitly mitigate the visual-linguistic confounders by causal front-door intervention. Specifically, due to the absence of a generalized semantic extractor, the VDM explores and disentangles the visual confounders from the patch-based local and global features without expensive fine-grained annotations. Simultaneously, due to the lack of knowledge encompassing the entire field of medicine, the LDM eliminates the linguistic confounders caused by salient visual features and high-frequency context without constructing a terminology database. Extensive experiments on IU-Xray and MIMIC-CXR datasets show that our VLCI significantly outperforms the state-of-the-art MRG methods. The code and models are available at //github.com/WissingChen/VLCI.

Passive monitoring of acoustic or radio sources has important applications in modern convenience, public safety, and surveillance. A key task in passive monitoring is multiobject tracking (MOT). This paper presents a Bayesian method for multisensor MOT for challenging tracking problems where the object states are high-dimensional, and the measurements follow a nonlinear model. Our method is developed in the framework of factor graphs and the sum-product algorithm (SPA) and implemented using random samples or "particles". The multimodal probability density functions (pdfs) provided by the SPA are effectively represented by a Gaussian mixture model (GMM). To perform the operations of the SPA with improved sample efficiency, we make use of Particle flow (PFL). Here, particles are migrated towards regions of high likelihood based on the solution of a partial differential equation. This makes it possible to obtain good object detection and tracking performance even in challenging multisensor MOT scenarios with single sensor measurements that have a lower dimension than the object positions. We perform a numerical evaluation in a passive acoustic monitoring scenario where multiple sources are tracked in 3-D from 1-D time-difference-of-arrival (TDOA) measurements provided by pairs of hydrophones. Our numerical results demonstrate favorable detection and estimation accuracy compared to state-of-the-art reference techniques.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.

Collaborative filtering often suffers from sparsity and cold start problems in real recommendation scenarios, therefore, researchers and engineers usually use side information to address the issues and improve the performance of recommender systems. In this paper, we consider knowledge graphs as the source of side information. We propose MKR, a Multi-task feature learning approach for Knowledge graph enhanced Recommendation. MKR is a deep end-to-end framework that utilizes knowledge graph embedding task to assist recommendation task. The two tasks are associated by cross&compress units, which automatically share latent features and learn high-order interactions between items in recommender systems and entities in the knowledge graph. We prove that cross&compress units have sufficient capability of polynomial approximation, and show that MKR is a generalized framework over several representative methods of recommender systems and multi-task learning. Through extensive experiments on real-world datasets, we demonstrate that MKR achieves substantial gains in movie, book, music, and news recommendation, over state-of-the-art baselines. MKR is also shown to be able to maintain a decent performance even if user-item interactions are sparse.

北京阿比特科技有限公司