亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents an analysis of properties of two hybrid discretization methods for Gaussian derivatives, based on convolutions with either the normalized sampled Gaussian kernel or the integrated Gaussian kernel followed by central differences. The motivation for studying these discretization methods is that in situations when multiple spatial derivatives of different order are needed at the same scale level, they can be computed significantly more efficiently compared to more direct derivative approximations based on explicit convolutions with either sampled Gaussian kernels or integrated Gaussian kernels. While these computational benefits do also hold for the genuinely discrete approach for computing discrete analogues of Gaussian derivatives, based on convolution with the discrete analogue of the Gaussian kernel followed by central differences, the underlying mathematical primitives for the discrete analogue of the Gaussian kernel, in terms of modified Bessel functions of integer order, may not be available in certain frameworks for image processing, such as when performing deep learning based on scale-parameterized filters in terms of Gaussian derivatives, with learning of the scale levels. In this paper, we present a characterization of the properties of these hybrid discretization methods, in terms of quantitative performance measures concerning the amount of spatial smoothing that they imply, as well as the relative consistency of scale estimates obtained from scale-invariant feature detectors with automatic scale selection, with an emphasis on the behaviour for very small values of the scale parameter, which may differ significantly from corresponding results obtained from the fully continuous scale-space theory, as well as between different types of discretization methods.

相關內容

We describe a simple deterministic near-linear time approximation scheme for uncapacitated minimum cost flow in undirected graphs with real edge weights, a problem also known as transshipment. Specifically, our algorithm takes as input a (connected) undirected graph $G = (V, E)$, vertex demands $b \in \mathbb{R}^V$ such that $\sum_{v \in V} b(v) = 0$, positive edge costs $c \in \mathbb{R}_{>0}^E$, and a parameter $\varepsilon > 0$. In $O(\varepsilon^{-2} m \log^{O(1)} n)$ time, it returns a flow $f$ such that the net flow out of each vertex is equal to the vertex's demand and the cost of the flow is within a $(1 + \varepsilon)$ factor of optimal. Our algorithm is combinatorial and has no running time dependency on the demands or edge costs. With the exception of a recent result presented at STOC 2022 for polynomially bounded edge weights, all almost- and near-linear time approximation schemes for transshipment relied on randomization to embed the problem instance into low-dimensional space. Our algorithm instead deterministically approximates the cost of routing decisions that would be made if the input were subject to a random tree embedding. To avoid computing the $\Omega(n^2)$ vertex-vertex distances that an approximation of this kind suggests, we also take advantage of the clustering method used in the well-known Thorup-Zwick distance oracle.

We present and analyze a structure-preserving method for the approximation of solutions to nonlinear cross-diffusion systems, which combines a Local Discontinuous Galerkin spatial discretization with the backward Euler time stepping scheme. The proposed method makes use of the underlying entropy structure of the system, expressing the main unknown in terms of the entropy variable by means of a nonlinear transformation. Such a transformation allows for imposing the physical positivity or boundedness constraints on the approximate solution in a strong sense. Moreover, nonlinearities do not appear explicitly within differential operators or interface terms in the scheme, which significantly improves its efficiency and ease its implementation. We prove the existence of discrete solutions and their asymptotic convergence to continuous weak solutions. Numerical results for some one- and two-dimensional problems illustrate the accuracy and entropy stability of the proposed method.

Various methods have emerged for conducting mediation analyses with multiple correlated mediators, each with distinct strengths and limitations. However, a comparative evaluation of these methods is lacking, providing the motivation for this paper. This study examines six mediation analysis methods for multiple correlated mediators that provide insights to the contributors for health disparities. We assessed the performance of each method in identifying joint or path-specific mediation effects in the context of binary outcome variables varying mediator types and levels of residual correlation between mediators. Through comprehensive simulations, the performance of six methods in estimating joint and/or path-specific mediation effects was assessed rigorously using a variety of metrics including bias, mean squared error, coverage and width of the 95$\%$ confidence intervals. Subsequently, these methods were applied to the REasons for Geographic And Racial Differences in Stroke (REGARDS) study, where differing conclusions were obtained depending on the mediation method employed. This evaluation provides valuable guidance for researchers grappling with complex multi-mediator scenarios, enabling them to select an optimal mediation method for their research question and dataset.

The present work concerns the derivation of a numerical scheme to approximate weak solutions of the Euler equations with a gravitational source term. The designed scheme is proved to be fully well-balanced since it is able to exactly preserve all moving equilibrium solutions, as well as the corresponding steady solutions at rest obtained when the velocity vanishes. Moreover, the proposed scheme is entropy-preserving since it satisfies all fully discrete entropy inequalities. In addition, in order to satisfy the required admissibility of the approximate solutions, the positivity of both approximate density and pressure is established. Several numerical experiments attest the relevance of the developed numerical method.

Precision matrices are crucial in many fields such as social networks, neuroscience, and economics, representing the edge structure of Gaussian graphical models (GGMs), where a zero in an off-diagonal position of the precision matrix indicates conditional independence between nodes. In high-dimensional settings where the dimension of the precision matrix $p$ exceeds the sample size $n$ and the matrix is sparse, methods like graphical Lasso, graphical SCAD, and CLIME are popular for estimating GGMs. While frequentist methods are well-studied, Bayesian approaches for (unstructured) sparse precision matrices are less explored. The graphical horseshoe estimate by \citet{li2019graphical}, applying the global-local horseshoe prior, shows superior empirical performance, but theoretical work for sparse precision matrix estimations using shrinkage priors is limited. This paper addresses these gaps by providing concentration results for the tempered posterior with the fully specified horseshoe prior in high-dimensional settings. Moreover, we also provide novel theoretical results for model misspecification, offering a general oracle inequality for the posterior.

We propose a scalable variational Bayes method for statistical inference for a single or low-dimensional subset of the coordinates of a high-dimensional parameter in sparse linear regression. Our approach relies on assigning a mean-field approximation to the nuisance coordinates and carefully modelling the conditional distribution of the target given the nuisance. This requires only a preprocessing step and preserves the computational advantages of mean-field variational Bayes, while ensuring accurate and reliable inference for the target parameter, including for uncertainty quantification. We investigate the numerical performance of our algorithm, showing that it performs competitively with existing methods. We further establish accompanying theoretical guarantees for estimation and uncertainty quantification in the form of a Bernstein--von Mises theorem.

Mechanical issues of noncircular and asymmetrical tunnelling can be estimated using complex variable method with suitable conformal mapping. Exsiting solution schemes of conformal mapping for noncircular tunnel generally need iteration or optimization strategy, and are thereby mathematically complicated. This paper proposes a new bidirectional conformal mapping for deep and shallow tunnels of noncircular and asymmetrical shapes by incorporating Charge Simulation Method. The solution scheme of this new bidirectional conformal mapping only involves a pair of linear systems, and is therefore logically straight-forward, computationally efficient, and practically easy in coding. New numerical strategies are developed to deal with possible sharp corners of cavity by small arc simulation and densified collocation points. Several numerical examples are presented to illustrate the geometrical usage of the new bidirectional conformal mapping. Furthermore, the new bidirectional conformal mapping is embedded into two complex variable solutions of noncircular and asymmetrical shallow tunnelling in gravitational geomaterial with reasonable far-field displacement. The respective result comparisons with finite element solution and exsiting analytical solution show good agreements, indicating the feasible mechanical usage of the new bidirectional conformal mapping.

Suitable discretizations through tensor product formulas of popular multidimensional operators (diffusion or diffusion--advection, for instance) lead to matrices with $d$-dimensional Kronecker sum structure. For evolutionary Partial Differential Equations containing such operators and integrated in time with exponential integrators, it is then of paramount importance to efficiently approximate the actions of $\varphi$-functions of the arising matrices. In this work, we show how to produce directional split approximations of third order with respect to the time step size. They conveniently employ tensor-matrix products (the so-called $\mu$-mode product and related Tucker operator, realized in practice with high performance level 3 BLAS), and allow for the effective usage of exponential Runge--Kutta integrators up to order three. The technique can also be efficiently implemented on modern computer hardware such as Graphic Processing Units. The approach has been successfully tested against state-of-the-art techniques on two well-known physical models that lead to Turing patterns, namely the 2D Schnakenberg and the 3D FitzHugh--Nagumo systems, on different hardware and software architectures.

A novel and fully distributed optimization method is proposed for the distributed robust convex program (DRCP) over a time-varying unbalanced directed network under the uniformly jointly strongly connected (UJSC) assumption. Firstly, a tractable approximated DRCP (ADRCP) is introduced by discretizing the semi-infinite constraints into a finite number of inequality constraints and restricting the right-hand side of the constraints with a positive parameter. This problem is iteratively solved by a distributed projected gradient algorithm proposed in this paper, which is based on epigraphic reformulation and subgradient projected algorithms. Secondly, a cutting-surface consensus approach is proposed for locating an approximately optimal consensus solution of the DRCP with guaranteed feasibility. This approach is based on iteratively approximating the DRCP by successively reducing the restriction parameter of the right-hand constraints and populating the cutting-surfaces into the existing finite set of constraints. Thirdly, to ensure finite-time termination of the distributed optimization, a distributed termination algorithm is developed based on consensus and zeroth-order stopping conditions under UJSC graphs. Fourthly, it is proved that the cutting-surface consensus approach terminates finitely and yields a feasible and approximate optimal solution for each agent. Finally, the effectiveness of the approach is illustrated through a numerical example.

For the fractional Laplacian of variable order, an efficient and accurate numerical evaluation in multi-dimension is a challenge for the nature of a singular integral. We propose a simple and easy-to-implement finite difference scheme for the multi-dimensional variable-order fractional Laplacian defined by a hypersingular integral. We prove that the scheme is of second-order convergence and apply the developed finite difference scheme to solve various equations with the variable-order fractional Laplacian. We present a fast solver with quasi-linear complexity of the scheme for computing variable-order fractional Laplacian and corresponding PDEs. Several numerical examples demonstrate the accuracy and efficiency of our algorithm and verify our theory.

北京阿比特科技有限公司