Structured additive distributional regression models offer a versatile framework for estimating complete conditional distributions by relating all parameters of a parametric distribution to covariates. Although these models efficiently leverage information in vast and intricate data sets, they often result in highly-parameterized models with many unknowns. Standard estimation methods, like Bayesian approaches based on Markov chain Monte Carlo methods, face challenges in estimating these models due to their complexity and costliness. To overcome these issues, we suggest a fast and scalable alternative based on variational inference. Our approach combines a parsimonious parametric approximation for the posteriors of regression coefficients, with the exact conditional posterior for hyperparameters. For optimization, we use a stochastic gradient ascent method combined with an efficient strategy to reduce the variance of estimators. We provide theoretical properties and investigate global and local annealing to enhance robustness, particularly against data outliers. Our implementation is very general, allowing us to include various functional effects like penalized splines or complex tensor product interactions. In a simulation study, we demonstrate the efficacy of our approach in terms of accuracy and computation time. Lastly, we present two real examples illustrating the modeling of infectious COVID-19 outbreaks and outlier detection in brain activity.
Semantic segmentation models trained on annotated data fail to generalize well when the input data distribution changes over extended time period, leading to requiring re-training to maintain performance. Classic Unsupervised domain adaptation (UDA) attempts to address a similar problem when there is target domain with no annotated data points through transferring knowledge from a source domain with annotated data. We develop an online UDA algorithm for semantic segmentation of images that improves model generalization on unannotated domains in scenarios where source data access is restricted during adaptation. We perform model adaptation is by minimizing the distributional distance between the source latent features and the target features in a shared embedding space. Our solution promotes a shared domain-agnostic latent feature space between the two domains, which allows for classifier generalization on the target dataset. To alleviate the need of access to source samples during adaptation, we approximate the source latent feature distribution via an appropriate surrogate distribution, in this case a Gassian mixture model (GMM). We evaluate our approach on well established semantic segmentation datasets and demonstrate it compares favorably against state-of-the-art (SOTA) UDA semantic segmentation methods.
Prompt injection attacks exploit vulnerabilities in large language models (LLMs) to manipulate the model into unintended actions or generate malicious content. As LLM integrated applications gain wider adoption, they face growing susceptibility to such attacks. This study introduces a novel evaluation framework for quantifying the resilience of applications. The framework incorporates innovative techniques designed to ensure representativeness, interpretability, and robustness. To ensure the representativeness of simulated attacks on the application, a meticulous selection process was employed, resulting in 115 carefully chosen attacks based on coverage and relevance. For enhanced interpretability, a second LLM was utilized to evaluate the responses generated from these simulated attacks. Unlike conventional malicious content classifiers that provide only a confidence score, the LLM-based evaluation produces a score accompanied by an explanation, thereby enhancing interpretability. Subsequently, a resilience score is computed by assigning higher weights to attacks with greater impact, thus providing a robust measurement of the application resilience. To assess the framework's efficacy, it was applied on two LLMs, namely Llama2 and ChatGLM. Results revealed that Llama2, the newer model exhibited higher resilience compared to ChatGLM. This finding substantiates the effectiveness of the framework, aligning with the prevailing notion that newer models tend to possess greater resilience. Moreover, the framework exhibited exceptional versatility, requiring only minimal adjustments to accommodate emerging attack techniques and classifications, thereby establishing itself as an effective and practical solution. Overall, the framework offers valuable insights that empower organizations to make well-informed decisions to fortify their applications against potential threats from prompt injection.
Despite significant progress in deep learning-based optical flow methods, accurately estimating large displacements and repetitive patterns remains a challenge. The limitations of local features and similarity search patterns used in these algorithms contribute to this issue. Additionally, some existing methods suffer from slow runtime and excessive graphic memory consumption. To address these problems, this paper proposes a novel approach based on the RAFT framework. The proposed Attention-based Feature Localization (AFL) approach incorporates the attention mechanism to handle global feature extraction and address repetitive patterns. It introduces an operator for matching pixels with corresponding counterparts in the second frame and assigning accurate flow values. Furthermore, an Amorphous Lookup Operator (ALO) is proposed to enhance convergence speed and improve RAFTs ability to handle large displacements by reducing data redundancy in its search operator and expanding the search space for similarity extraction. The proposed method, Efficient RAFT (Ef-RAFT),achieves significant improvements of 10% on the Sintel dataset and 5% on the KITTI dataset over RAFT. Remarkably, these enhancements are attained with a modest 33% reduction in speed and a mere 13% increase in memory usage. The code is available at: //github.com/n3slami/Ef-RAFT
This paper introduces an iterative algorithm designed to train additive models with favorable memory storage and computational requirements. The algorithm can be viewed as the functional counterpart of stochastic gradient descent, applied to the coefficients of a truncated basis expansion of the component functions. We show that the resulting estimator satisfies an oracle inequality that allows for model mispecification. In the well-specified setting, by choosing the learning rate carefully across three distinct stages of training, we prove that its risk is minimax optimal in terms of the dependence on the dimensionality of the data and the size of the training sample.
The Gaussian process (GP) regression model is a widely employed surrogate modeling technique for computer experiments, offering precise predictions and statistical inference for the computer simulators that generate experimental data. Estimation and inference for GP can be performed in both frequentist and Bayesian frameworks. In this chapter, we construct the GP model through variational inference, particularly employing the recently introduced energetic variational inference method by Wang et al. (2021). Adhering to the GP model assumptions, we derive posterior distributions for its parameters. The energetic variational inference approach bridges the Bayesian sampling and optimization and enables approximation of the posterior distributions and identification of the posterior mode. By incorporating a normal prior on the mean component of the GP model, we also apply shrinkage estimation to the parameters, facilitating mean function variable selection. To showcase the effectiveness of our proposed GP model, we present results from three benchmark examples.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
Current models for event causality identification (ECI) mainly adopt a supervised framework, which heavily rely on labeled data for training. Unfortunately, the scale of current annotated datasets is relatively limited, which cannot provide sufficient support for models to capture useful indicators from causal statements, especially for handing those new, unseen cases. To alleviate this problem, we propose a novel approach, shortly named CauSeRL, which leverages external causal statements for event causality identification. First of all, we design a self-supervised framework to learn context-specific causal patterns from external causal statements. Then, we adopt a contrastive transfer strategy to incorporate the learned context-specific causal patterns into the target ECI model. Experimental results show that our method significantly outperforms previous methods on EventStoryLine and Causal-TimeBank (+2.0 and +3.4 points on F1 value respectively).
We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. Our implicit field decoder is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our decoder for representation learning and generative modeling of shapes, we demonstrate superior results for tasks such as shape autoencoding, generation, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality.
Script event prediction requires a model to predict the subsequent event given an existing event context. Previous models based on event pairs or event chains cannot make full use of dense event connections, which may limit their capability of event prediction. To remedy this, we propose constructing an event graph to better utilize the event network information for script event prediction. In particular, we first extract narrative event chains from large quantities of news corpus, and then construct a narrative event evolutionary graph (NEEG) based on the extracted chains. NEEG can be seen as a knowledge base that describes event evolutionary principles and patterns. To solve the inference problem on NEEG, we present a scaled graph neural network (SGNN) to model event interactions and learn better event representations. Instead of computing the representations on the whole graph, SGNN processes only the concerned nodes each time, which makes our model feasible to large-scale graphs. By comparing the similarity between input context event representations and candidate event representations, we can choose the most reasonable subsequent event. Experimental results on widely used New York Times corpus demonstrate that our model significantly outperforms state-of-the-art baseline methods, by using standard multiple choice narrative cloze evaluation.
We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.