3D object detection is fundamentally important for various emerging applications, including autonomous driving and robotics. A key requirement for training an accurate 3D object detector is the availability of a large amount of LiDAR-based point cloud data. Unfortunately, labeling point cloud data is extremely challenging, as accurate 3D bounding boxes and semantic labels are required for each potential object. This paper proposes a unified active 3D object detection framework, for greatly reducing the labeling cost of training 3D object detectors. Our framework is based on a novel formulation of submodular optimization, specifically tailored to the problem of active 3D object detection. In particular, we address two fundamental challenges associated with active 3D object detection: data imbalance and the need to cover the distribution of the data, including LiDAR-based point cloud data of varying difficulty levels. Extensive experiments demonstrate that our method achieves state-of-the-art performance with high computational efficiency compared to existing active learning methods. The code is available at //github.com/RuiyuM/STONE.
Interactive segmentation aims to extract objects of interest from an image based on user-provided clicks. In real-world applications, there is often a need to segment a series of images featuring the same target object. However, existing methods typically process one image at a time, failing to consider the sequential nature of the images. To overcome this limitation, we propose a novel method called Sequence Prompt Transformer (SPT), the first to utilize sequential image information for interactive segmentation. Our model comprises two key components: (1) Sequence Prompt Transformer (SPT) for acquiring information from sequence of images, clicks and masks to improve accurate. (2) Top-k Prompt Selection (TPS) selects precise prompts for SPT to further enhance the segmentation effect. Additionally, we create the ADE20K-Seq benchmark to better evaluate model performance. We evaluate our approach on multiple benchmark datasets and show that our model surpasses state-of-the-art methods across all datasets.
Software vulnerability detection is crucial for high-quality software development. Recently, some studies utilizing Graph Neural Networks (GNNs) to learn the graph representation of code in vulnerability detection tasks have achieved remarkable success. However, existing graph-based approaches mainly face two limitations that prevent them from generalizing well to large code graphs: (1) the interference of noise information in the code graph; (2) the difficulty in capturing long-distance dependencies within the graph. To mitigate these problems, we propose a novel vulnerability detection method, ANGLE, whose novelty mainly embodies the hierarchical graph refinement and context-aware graph representation learning. The former hierarchically filters redundant information in the code graph, thereby reducing the size of the graph, while the latter collaboratively employs the Graph Transformer and GNN to learn code graph representations from both the global and local perspectives, thus capturing long-distance dependencies. Extensive experiments demonstrate promising results on three widely used benchmark datasets: our method significantly outperforms several other baselines in terms of the accuracy and F1 score. Particularly, in large code graphs, ANGLE achieves an improvement in accuracy of 34.27%-161.93% compared to the state-of-the-art method, AMPLE. Such results demonstrate the effectiveness of ANGLE in vulnerability detection tasks.
Stiffness estimation is crucial for delicate object manipulation in robotic and prosthetic hands but remains challenging due to dependence on force and displacement measurement and real-time sensory integration. This study presents a piezoelectric sensing framework for stiffness estimation at first contact during pinch grasps, addressing the limitations of traditional force-based methods. Inspired by human skin, a multimodal tactile sensor that captures vibrational and force data is developed and integrated into a prosthetic hand's fingertip. Machine learning models, including support vector machines and convolutional neural networks, demonstrate that vibrational signals within the critical 15 ms after first contact reliably encode stiffness, achieving classification accuracies up to 98.6% and regression errors as low as 2.39 Shore A on real-world objects of varying stiffness. Inference times of less than 1.5 ms are significantly faster than the average grasp closure time (16.65 ms in our dataset), enabling real-time stiffness estimation before the object is fully grasped. By leveraging the transient asymmetry in grasp dynamics, where one finger contacts the object before the others, this method enables early grasp modulation, enhancing safety and intuitiveness in prosthetic hands while offering broad applications in robotics.
Deep reinforcement learning (DRL) has revolutionised quadruped robot locomotion, but existing control frameworks struggle to generalise beyond their training-induced observational scope, resulting in limited adaptability. In contrast, animals achieve exceptional adaptability through gait transition strategies, diverse gait utilisation, and seamless adjustment to immediate environmental demands. Inspired by these capabilities, we present a novel DRL framework that incorporates key attributes of animal locomotion: gait transition strategies, pseudo gait procedural memory, and adaptive motion adjustments. This approach enables our framework to achieve unparalleled adaptability, demonstrated through blind zero-shot deployment on complex terrains and recovery from critically unstable states. Our findings offer valuable insights into the biomechanics of animal locomotion, paving the way for robust, adaptable robotic systems.
Satire detection is essential for accurately extracting opinions from textual data and combating misinformation online. However, the lack of diverse corpora for satire leads to the problem of stylistic bias which impacts the models' detection performances. This study proposes a debiasing approach for satire detection, focusing on reducing biases in training data by utilizing generative large language models. The approach is evaluated in both cross-domain (irony detection) and cross-lingual (English) settings. Results show that the debiasing method enhances the robustness and generalizability of the models for satire and irony detection tasks in Turkish and English. However, its impact on causal language models, such as Llama-3.1, is limited. Additionally, this work curates and presents the Turkish Satirical News Dataset with detailed human annotations, with case studies on classification, debiasing, and explainability.
Articulated object manipulation is a challenging task, requiring constrained motion and adaptive control to handle the unknown dynamics of the manipulated objects. While reinforcement learning (RL) has been widely employed to tackle various scenarios and types of articulated objects, the complexity of these tasks, stemming from multiple intertwined objectives makes learning a control policy in the full task space highly difficult. To address this issue, we propose a Subspace-wise hybrid RL (SwRL) framework that learns policies for each divided task space, or subspace, based on independent objectives. This approach enables adaptive force modulation to accommodate the unknown dynamics of objects. Additionally, it effectively leverages the previously underlooked redundant subspace, thereby maximizing the robot's dexterity. Our method enhances both learning efficiency and task execution performance, as validated through simulations and real-world experiments. Supplementary video is available at //youtu.be/PkNxv0P8Atk
Moving object segmentation based on LiDAR is a crucial and challenging task for autonomous driving and mobile robotics. Most approaches explore spatio-temporal information from LiDAR sequences to predict moving objects in the current frame. However, they often focus on transferring temporal cues in a single inference and regard every prediction as independent of others. This may cause inconsistent segmentation results for the same object in different frames. To overcome this issue, we propose a streaming network with a memory mechanism, called StreamMOS, to build the association of features and predictions among multiple inferences. Specifically, we utilize a short-term memory to convey historical features, which can be regarded as spatial prior of moving objects and adopted to enhance current inference by temporal fusion. Meanwhile, we build a long-term memory to store previous predictions and exploit them to refine the present forecast at voxel and instance levels through voting. Besides, we present multi-view encoder with cascade projection and asymmetric convolution to extract motion feature of objects in different representations. Extensive experiments validate that our algorithm gets competitive performance on SemanticKITTI and Sipailou Campus datasets. Code will be released at //github.com/NEU-REAL/StreamMOS.git.
Sentiment analysis and emotion recognition are crucial for applications such as human-computer interaction and depression detection. Traditional unimodal methods often fail to capture the complexity of emotional expressions due to conflicting signals from different modalities. Current Multimodal Large Language Models (MLLMs) also face challenges in detecting subtle facial expressions and addressing a wide range of emotion-related tasks. To tackle these issues, we propose M2SE, a Multistage Multitask Sentiment and Emotion Instruction Tuning Strategy for general-purpose MLLMs. It employs a combined approach to train models on tasks such as multimodal sentiment analysis, emotion recognition, facial expression recognition, emotion reason inference, and emotion cause-pair extraction. We also introduce the Emotion Multitask dataset (EMT), a custom dataset that supports these five tasks. Our model, Emotion Universe (EmoVerse), is built on a basic MLLM framework without modifications, yet it achieves substantial improvements across these tasks when trained with the M2SE strategy. Extensive experiments demonstrate that EmoVerse outperforms existing methods, achieving state-of-the-art results in sentiment and emotion tasks. These results highlight the effectiveness of M2SE in enhancing multimodal emotion perception. The dataset and code are available at //github.com/xiaoyaoxinyi/M2SE.
Traffic forecasting is an important factor for the success of intelligent transportation systems. Deep learning models including convolution neural networks and recurrent neural networks have been applied in traffic forecasting problems to model the spatial and temporal dependencies. In recent years, to model the graph structures in the transportation systems as well as the contextual information, graph neural networks (GNNs) are introduced as new tools and have achieved the state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of recent research using different GNNs, e.g., graph convolutional and graph attention networks, in various traffic forecasting problems, e.g., road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, demand forecasting in ride-hailing platforms, etc. We also present a collection of open data and source resources for each problem, as well as future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public Github repository to update the latest papers, open data and source resources.
Salient object detection is a fundamental problem and has been received a great deal of attentions in computer vision. Recently deep learning model became a powerful tool for image feature extraction. In this paper, we propose a multi-scale deep neural network (MSDNN) for salient object detection. The proposed model first extracts global high-level features and context information over the whole source image with recurrent convolutional neural network (RCNN). Then several stacked deconvolutional layers are adopted to get the multi-scale feature representation and obtain a series of saliency maps. Finally, we investigate a fusion convolution module (FCM) to build a final pixel level saliency map. The proposed model is extensively evaluated on four salient object detection benchmark datasets. Results show that our deep model significantly outperforms other 12 state-of-the-art approaches.