亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The progressive prevalence of robots in human-suited environments has given rise to a myriad of object manipulation techniques, in which dexterity plays a paramount role. It is well-established that humans exhibit extraordinary dexterity when handling objects. Such dexterity seems to derive from a robust understanding of object properties (such as weight, size, and shape), as well as a remarkable capacity to interact with them. Hand postures commonly demonstrate the influence of specific regions on objects that need to be grasped, especially when objects are partially visible. In this work, we leverage human-like object understanding by reconstructing and completing their full geometry from partial observations, and manipulating them using a 7-DoF anthropomorphic robot hand. Our approach has significantly improved the grasping success rates of baselines with only partial reconstruction by nearly 30% and achieved over 150 successful grasps with three different object categories. This demonstrates our approach's consistent ability to predict and execute grasping postures based on the completed object shapes from various directions and positions in real-world scenarios. Our work opens up new possibilities for enhancing robotic applications that require precise grasping and manipulation skills of real-world reconstructed objects.

相關內容

In offline imitation learning (IL), an agent aims to learn an optimal expert behavior policy without additional online environment interactions. However, in many real-world scenarios, such as robotics manipulation, the offline dataset is collected from suboptimal behaviors without rewards. Due to the scarce expert data, the agents usually suffer from simply memorizing poor trajectories and are vulnerable to variations in the environments, lacking the capability of generalizing to new environments. To automatically generate high-quality expert data and improve the generalization ability of the agent, we propose a framework named \underline{O}ffline \underline{I}mitation \underline{L}earning with \underline{C}ounterfactual data \underline{A}ugmentation (OILCA) by doing counterfactual inference. In particular, we leverage identifiable variational autoencoder to generate \textit{counterfactual} samples for expert data augmentation. We theoretically analyze the influence of the generated expert data and the improvement of generalization. Moreover, we conduct extensive experiments to demonstrate that our approach significantly outperforms various baselines on both \textsc{DeepMind Control Suite} benchmark for in-distribution performance and \textsc{CausalWorld} benchmark for out-of-distribution generalization. Our code is available at \url{//github.com/ZexuSun/OILCA-NeurIPS23}.

Learning policies that can generalize to unseen environments is a fundamental challenge in visual reinforcement learning (RL). While most current methods focus on acquiring robust visual representations through auxiliary supervision, pre-training, or data augmentation, the potential of modern vision foundation models remains underleveraged. In this work, we introduce Segment Anything Model for Generalizable visual RL (SAM-G), a novel framework that leverages the promptable segmentation ability of Segment Anything Model (SAM) to enhance the generalization capabilities of visual RL agents. We utilize image features from DINOv2 and SAM to find correspondence as point prompts to SAM, and then SAM produces high-quality masked images for agents directly. Evaluated across 8 DMControl tasks and 3 Adroit tasks, SAM-G significantly improves the visual generalization ability without altering the RL agents' architecture but merely their observations. Notably, SAM-G achieves 44% and 29% relative improvements on the challenging video hard setting on DMControl and Adroit respectively, compared to state-of-the-art methods. Video and code: //yanjieze.com/SAM-G/

Training large machine learning models requires a distributed computing approach, with communication of the model updates being the bottleneck. For this reason, several methods based on the compression (e.g., sparsification and/or quantization) of updates were recently proposed, including QSGD (Alistarh et al., 2017), TernGrad (Wen et al., 2017), SignSGD (Bernstein et al., 2018), and DQGD (Khirirat et al., 2018). However, none of these methods are able to learn the gradients, which renders them incapable of converging to the true optimum in the batch mode. In this work we propose a new distributed learning method -- DIANA -- which resolves this issue via compression of gradient differences. We perform a theoretical analysis in the strongly convex and nonconvex settings and show that our rates are superior to existing rates. We also provide theory to support non-smooth regularizers study the difference between quantization schemes. Our analysis of block-quantization and differences between $\ell_2$ and $\ell_{\infty}$ quantization closes the gaps in theory and practice. Finally, by applying our analysis technique to TernGrad, we establish the first convergence rate for this method.

Humans can effortlessly modify various prosodic attributes, such as the placement of stress and the intensity of sentiment, to convey a specific emotion while maintaining consistent linguistic content. Motivated by this capability, we propose EmoAug, a novel style transfer model designed to enhance emotional expression and tackle the data scarcity issue in speech emotion recognition tasks. EmoAug consists of a semantic encoder and a paralinguistic encoder that represent verbal and non-verbal information respectively. Additionally, a decoder reconstructs speech signals by conditioning on the aforementioned two information flows in an unsupervised fashion. Once training is completed, EmoAug enriches expressions of emotional speech with different prosodic attributes, such as stress, rhythm and intensity, by feeding different styles into the paralinguistic encoder. EmoAug enables us to generate similar numbers of samples for each class to tackle the data imbalance issue as well. Experimental results on the IEMOCAP dataset demonstrate that EmoAug can successfully transfer different speaking styles while retaining the speaker identity and semantic content. Furthermore, we train a SER model with data augmented by EmoAug and show that the augmented model not only surpasses the state-of-the-art supervised and self-supervised methods but also overcomes overfitting problems caused by data imbalance. Some audio samples can be found on our demo website.

Sequential recommendation aims to leverage users' historical behaviors to predict their next interaction. Existing works have not yet addressed two main challenges in sequential recommendation. First, user behaviors in their rich historical sequences are often implicit and noisy preference signals, they cannot sufficiently reflect users' actual preferences. In addition, users' dynamic preferences often change rapidly over time, and hence it is difficult to capture user patterns in their historical sequences. In this work, we propose a graph neural network model called SURGE (short for SeqUential Recommendation with Graph neural nEtworks) to address these two issues. Specifically, SURGE integrates different types of preferences in long-term user behaviors into clusters in the graph by re-constructing loose item sequences into tight item-item interest graphs based on metric learning. This helps explicitly distinguish users' core interests, by forming dense clusters in the interest graph. Then, we perform cluster-aware and query-aware graph convolutional propagation and graph pooling on the constructed graph. It dynamically fuses and extracts users' current activated core interests from noisy user behavior sequences. We conduct extensive experiments on both public and proprietary industrial datasets. Experimental results demonstrate significant performance gains of our proposed method compared to state-of-the-art methods. Further studies on sequence length confirm that our method can model long behavioral sequences effectively and efficiently.

Recently, contrastive learning (CL) has emerged as a successful method for unsupervised graph representation learning. Most graph CL methods first perform stochastic augmentation on the input graph to obtain two graph views and maximize the agreement of representations in the two views. Despite the prosperous development of graph CL methods, the design of graph augmentation schemes -- a crucial component in CL -- remains rarely explored. We argue that the data augmentation schemes should preserve intrinsic structures and attributes of graphs, which will force the model to learn representations that are insensitive to perturbation on unimportant nodes and edges. However, most existing methods adopt uniform data augmentation schemes, like uniformly dropping edges and uniformly shuffling features, leading to suboptimal performance. In this paper, we propose a novel graph contrastive representation learning method with adaptive augmentation that incorporates various priors for topological and semantic aspects of the graph. Specifically, on the topology level, we design augmentation schemes based on node centrality measures to highlight important connective structures. On the node attribute level, we corrupt node features by adding more noise to unimportant node features, to enforce the model to recognize underlying semantic information. We perform extensive experiments of node classification on a variety of real-world datasets. Experimental results demonstrate that our proposed method consistently outperforms existing state-of-the-art baselines and even surpasses some supervised counterparts, which validates the effectiveness of the proposed contrastive framework with adaptive augmentation.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.

Aspect based sentiment analysis (ABSA) can provide more detailed information than general sentiment analysis, because it aims to predict the sentiment polarities of the given aspects or entities in text. We summarize previous approaches into two subtasks: aspect-category sentiment analysis (ACSA) and aspect-term sentiment analysis (ATSA). Most previous approaches employ long short-term memory and attention mechanisms to predict the sentiment polarity of the concerned targets, which are often complicated and need more training time. We propose a model based on convolutional neural networks and gating mechanisms, which is more accurate and efficient. First, the novel Gated Tanh-ReLU Units can selectively output the sentiment features according to the given aspect or entity. The architecture is much simpler than attention layer used in the existing models. Second, the computations of our model could be easily parallelized during training, because convolutional layers do not have time dependency as in LSTM layers, and gating units also work independently. The experiments on SemEval datasets demonstrate the efficiency and effectiveness of our models.

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.

北京阿比特科技有限公司