亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

High-dimensional matrix regression has been studied in various aspects, such as statistical properties, computational efficiency and application to specific instances including multivariate regression, system identification and matrix compressed sensing. Current studies mainly consider the idealized case that the covariate matrix is obtained without noise, while the more realistic scenario that the covariates may always be corrupted with noise or missing data has received little attention. We consider the general errors-in-variables matrix regression model and proposed a unified framework for low-rank estimation based on nonconvex spectral regularization. Then in the statistical aspect, recovery bounds for any stationary points are provided to achieve statistical consistency. In the computational aspect, the proximal gradient method is applied to solve the nonconvex optimization problem and is proved to converge in polynomial time. Consequences for specific matrix compressed sensing models with additive noise and missing data are obtained via verifying corresponding regularity conditions. Finally, the performance of the proposed nonconvex estimation method is illustrated by numerical experiments.

相關內容

We consider the problem of reconstructing the symmetric difference between similar sets from their representations (sketches) of size linear in the number of differences. Exact solutions to this problem are based on error-correcting coding techniques and suffer from a large decoding time. Existing probabilistic solutions based on Invertible Bloom Lookup Tables (IBLTs) are time-efficient but offer insufficient success guarantees for many applications. Here we propose a tunable trade-off between the two approaches combining the efficiency of IBLTs with exponentially decreasing failure probability. The proof relies on a refined analysis of IBLTs proposed in (Baek Tejs Houen et al. SOSA 2023) which has an independent interest. We also propose a modification of our algorithm that enables telling apart the elements of each set in the symmetric difference.

One of the key elements of probabilistic seismic risk assessment studies is the fragility curve, which represents the conditional probability of failure of a mechanical structure for a given scalar measure derived from seismic ground motion. For many structures of interest, estimating these curves is a daunting task because of the limited amount of data available; data which is only binary in our framework, i.e., only describing the structure as being in a failure or non-failure state. A large number of methods described in the literature tackle this challenging framework through parametric log-normal models. Bayesian approaches, on the other hand, allow model parameters to be learned more efficiently. However, the impact of the choice of the prior distribution on the posterior distribution cannot be readily neglected and, consequently, neither can its impact on any resulting estimation. This paper proposes a comprehensive study of this parametric Bayesian estimation problem for limited and binary data. Using the reference prior theory as a cornerstone, this study develops an objective approach to choosing the prior. This approach leads to the Jeffreys prior, which is derived for this problem for the first time. The posterior distribution is proven to be proper with the Jeffreys prior but improper with some traditional priors found in the literature. With the Jeffreys prior, the posterior distribution is also shown to vanish at the boundaries of the parameters' domain, which means that sampling the posterior distribution of the parameters does not result in anomalously small or large values. Therefore, the use of the Jeffreys prior does not result in degenerate fragility curves such as unit-step functions, and leads to more robust credibility intervals. The numerical results obtained from different case studies-including an industrial example-illustrate the theoretical predictions.

We propose the novel p-branch-and-bound method for solving two-stage stochastic programming problems whose deterministic equivalents are represented by non-convex mixed-integer quadratically constrained quadratic programming (MIQCQP) models. The precision of the solution generated by the p-branch-and-bound method can be arbitrarily adjusted by altering the value of the precision factor p. The proposed method combines two key techniques. The first one, named p-Lagrangian decomposition, generates a mixed-integer relaxation of a dual problem with a separable structure for a primal non-convex MIQCQP problem. The second one is a version of the classical dual decomposition approach that is applied to solve the Lagrangian dual problem and ensures that integrality and non-anticipativity conditions are met once the optimal solution is obtained. This paper also presents a comparative analysis of the p-branch-and-bound method efficiency considering two alternative solution methods for the dual problems as a subroutine. These are the proximal bundle method and Frank-Wolfe progressive hedging. The latter algorithm relies on the interpolation of linearisation steps similar to those taken in the Frank-Wolfe method as an inner loop in the classic progressive hedging. The p-branch-and-bound method's efficiency was tested on randomly generated instances and demonstrated superior performance over commercial solver Gurobi.

We introduce a high-dimensional cubical complex, for any dimension t>0, and apply it to the design of quantum locally testable codes. Our complex is a natural generalization of the constructions by Panteleev and Kalachev and by Dinur et. al of a square complex (case t=2), which have been applied to the design of classical locally testable codes (LTC) and quantum low-density parity check codes (qLDPC) respectively. We turn the geometric (cubical) complex into a chain complex by relying on constant-sized local codes $h_1,\ldots,h_t$ as gadgets. A recent result of Panteleev and Kalachev on existence of tuples of codes that are product expanding enables us to prove lower bounds on the cycle and co-cycle expansion of our chain complex. For t=4 our construction gives a new family of "almost-good" quantum LTCs -- with constant relative rate, inverse-polylogarithmic relative distance and soundness, and constant-size parity checks. Both the distance of the quantum code and its local testability are proven directly from the cycle and co-cycle expansion of our chain complex.

Dynamical low-rank (DLR) approximation has gained interest in recent years as a viable solution to the curse of dimensionality in the numerical solution of kinetic equations including the Boltzmann and Vlasov equations. These methods include the projector-splitting and Basis-update & Galerkin (BUG) DLR integrators, and have shown promise at greatly improving the computational efficiency of kinetic solutions. However, this often comes at the cost of conservation of charge, current and energy. In this work we show how a novel macro-micro decomposition may be used to separate the distribution function into two components, one of which carries the conserved quantities, and the other of which is orthogonal to them. We apply DLR approximation to the latter, and thereby achieve a clean and extensible approach to a conservative DLR scheme which retains the computational advantages of the base scheme. Moreover, our approach requires no change to the mechanics of the DLR approximation, so it is compatible with both the BUG family of integrators and the projector-splitting integrator which we use here. We describe a first-order integrator which can exactly conserve charge and either current or energy, as well as an integrator which exactly conserves charge and energy and exhibits second-order accuracy on our test problems. To highlight the flexibility of the proposed macro-micro decomposition, we implement a pair of velocity space discretizations, and verify the claimed accuracy and conservation properties on a suite of plasma benchmark problems.

In this work we consider the Allen--Cahn equation, a prototypical model problem in nonlinear dynamics that exhibits bifurcations corresponding to variations of a deterministic bifurcation parameter. Going beyond the state-of-the-art, we introduce a random coefficient function in the linear reaction part of the equation, thereby accounting for random, spatially-heterogeneous effects. Importantly, we assume a spatially constant, deterministic mean value of the random coefficient. We show that this mean value is in fact a bifurcation parameter in the Allen--Cahn equation with random coefficients. Moreover, we show that the bifurcation points and bifurcation curves become random objects. We consider two distinct modelling situations: (i) for a spatially homogeneous coefficient we derive analytical expressions for the distribution of the bifurcation points and show that the bifurcation curves are random shifts of a fixed reference curve; (ii) for a spatially heterogeneous coefficient we employ a generalized polynomial chaos expansion to approximate the statistical properties of the random bifurcation points and bifurcation curves. We present numerical examples in 1D physical space, where we combine the popular software package Continuation Core and Toolboxes (CoCo) for numerical continuation and the Sparse Grids Matlab Kit for the polynomial chaos expansion. Our exposition addresses both, dynamical systems and uncertainty quantification, highlighting how analytical and numerical tools from both areas can be combined efficiently for the challenging uncertainty quantification analysis of bifurcations in random differential equations.

Mediation analysis aims to decipher the underlying causal mechanisms between an exposure, an outcome, and intermediate variables called mediators. Initially developed for fixed-time mediator and outcome, it has been extended to the framework of longitudinal data by discretizing the assessment times of mediator and outcome. Yet, processes in play in longitudinal studies are usually defined in continuous time and measured at irregular and subject-specific visits. This is the case in dementia research when cerebral and cognitive changes measured at planned visits in cohorts are of interest. We thus propose a methodology to estimate the causal mechanisms between a time-fixed exposure ($X$), a mediator process ($\mathcal{M}_t$) and an outcome process ($\mathcal{Y}_t$) both measured repeatedly over time in the presence of a time-dependent confounding process ($\mathcal{L}_t$). We consider three types of causal estimands, the natural effects, path-specific effects and randomized interventional analogues to natural effects, and provide identifiability assumptions. We employ a dynamic multivariate model based on differential equations for their estimation. The performance of the methods are explored in simulations, and we illustrate the method in two real-world examples motivated by the 3C cerebral aging study to assess: (1) the effect of educational level on functional dependency through depressive symptomatology and cognitive functioning, and (2) the effect of a genetic factor on cognitive functioning potentially mediated by vascular brain lesions and confounded by neurodegeneration.

Hybrid quantum-classical computing in the noisy intermediate-scale quantum (NISQ) era with variational algorithms can exhibit barren plateau issues, causing difficult convergence of gradient-based optimization techniques. In this paper, we discuss "post-variational strategies", which shift tunable parameters from the quantum computer to the classical computer, opting for ensemble strategies when optimizing quantum models. We discuss various strategies and design principles for constructing individual quantum circuits, where the resulting ensembles can be optimized with convex programming. Further, we discuss architectural designs of post-variational quantum neural networks and analyze the propagation of estimation errors throughout such neural networks. Finally, we show that empirically, post-variational quantum neural networks using our architectural designs can potentially provide better results than variational algorithms and performance comparable to that of two-layer neural networks.

Functional data analysis is an important research field in statistics which treats data as random functions drawn from some infinite-dimensional functional space, and functional principal component analysis (FPCA) based on eigen-decomposition plays a central role for data reduction and representation. After nearly three decades of research, there remains a key problem unsolved, namely, the perturbation analysis of covariance operator for diverging number of eigencomponents obtained from noisy and discretely observed data. This is fundamental for studying models and methods based on FPCA, while there has not been substantial progress since Hall, M\"uller and Wang (2006)'s result for a fixed number of eigenfunction estimates. In this work, we aim to establish a unified theory for this problem, obtaining upper bounds for eigenfunctions with diverging indices in both the $\mathcal{L}^2$ and supremum norms, and deriving the asymptotic distributions of eigenvalues for a wide range of sampling schemes. Our results provide insight into the phenomenon when the $\mathcal{L}^{2}$ bound of eigenfunction estimates with diverging indices is minimax optimal as if the curves are fully observed, and reveal the transition of convergence rates from nonparametric to parametric regimes in connection to sparse or dense sampling. We also develop a double truncation technique to handle the uniform convergence of estimated covariance and eigenfunctions. The technical arguments in this work are useful for handling the perturbation series with noisy and discretely observed functional data and can be applied in models or those involving inverse problems based on FPCA as regularization, such as functional linear regression.

Progress in the realm of quantum technologies is paving the way for a multitude of potential applications across different sectors. However, the reduced number of available quantum computers, their technical limitations and the high demand for their use are posing some problems for developers and researchers. Mainly, users trying to execute quantum circuits on these devices are usually facing long waiting times in the tasks queues. In this context, this work propose a technique to reduce waiting times and optimize quantum computers usage by scheduling circuits from different users into combined circuits that are executed at the same time. To validate this proposal, different widely known quantum algorithms have been selected and executed in combined circuits. The obtained results are then compared with the results of executing the same algorithms in an isolated way. This allowed us to measure the impact of the use of the scheduler. Among the obtained results, it has been possible to verify that the noise suffered by executing a combination of circuits through the proposed scheduler does not critically affect the outcomes.

北京阿比特科技有限公司